Cauchy problem for the equations with fractional of Riemann-Liouville derivatives release_x4pdvl6t65c6pdy3iepyl5ro5u

by P. P. Zabreiko, S. V. Ponomareva

References

NOTE: currently batch computed and may include additional references sources, or be missing recent changes, compared to entity reference list.
Fuzzy reference matching is a work in progress!
Read more about quality, completeness, and caveats in the fatcat guide.
Showing 1 - 17 of 17 references (in 73ms)
[ref1]

via crossref-grobid
Theory and applications of fractional differential equations
A A Kilbas
2009  
volume:121 
[ref2]

via crossref
Theory and Applications of Fractional Differential Equations [book]
2006   North-Holland Mathematics Studies
doi:10.1016/s0304-0208(06)x8001-5 
[ref3]

via crossref-grobid
Integral operators in spaces of summable functions
M A Krasnosel’skiy , P P Zabreyko , I Pustyl’nik Ye , P Sobolevskiy , Ye
1966  
volume:500 
[ref4]

via crossref
SOLVABILITY OF THE CAUCHY PROBLEM FOR EQUATIONS WITH RIEMANN–LIOUVILLE'S FRACTIONAL DERIVATIVES
Petr P. Zabreiko, Svetlana V. Ponomareva
2018   Doklady of the National Academy of Sciences of Belarus
doi:10.29235/1561-8323-2018-62-4-391-397 
web.archive.org [PDF]
[ref5]

via crossref-grobid
On the continuity of solutions of the Cauchy problem for equations of fractional order
P P Zabreyko , S V Ponomareva
2018   Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika = Journal of the Belarusian State University. Mathematics and Informatics
[ref6]

via crossref-grobid
On integral Volterra operators
P P Zabreyko
1967  
volume:1 
[ref7]

via crossref-grobid
On the spectral radius of Volterra integral operators Litovskii matematicheskii sbornik = The Lithuanian Mathematical Collection
P P Zabreyko
1967  
[b7]

via grobid
kilbas A. A. Theory and applications of fractional differential equations. Samara, 2009. 121 p. (in Russian).
[b8]

via grobid
kilbas A. A., Srivastava H. M., Trujillo J. J. Theory and Applications of Fractional Differential Equations: North- Holland Mathematics Studies. Vol. 204. Elsevier, 2006. 523 p. https://doi.org/10.1016/s0304-0208(06)x8001-5 3. krasnosel'skiy M. A., Zabreyko P. P., Pustyl'nik ye. I., Sobolevskiy P. ye. Integral operators in spaces of summable functions. Moscow, 1966. 500 p. (in Russian).
[b9]

via grobid
Zabreiko P. P., Ponomareva S. V. Solvability of the Cauchy problem for equations with Riemann-Liouville's fractional derivatives. Doklady Natsional'noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2018, vol. 62, no. 4, pp. 391-397 (in Russian). https://doi.org/10.29235/1561-8323-2018-62-4-391-397
[b10]

via grobid
Zabreyko P. P., Ponomareva S. V. On the continuity of solutions of the Cauchy problem for equations of fractional order. Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika = Journal of the Belarusian State University. Mathematics and Informatics, 2018, no. 3, pp. 39-45 (in Russian).
[b11]

via grobid
Zabreyko P. P. On integral Volterra operators. Uspekhi matematicheskikh nauk = Russian Mathematical Surveys, 1967, vol. 1, pp. 167-168 (in Russian).
[b12]

via grobid
Zabreyko P. P. On the spectral radius of Volterra integral operators Litovskii matematicheskii sbornik = The Lithuanian Mathematical Collection, 1967, no. 2, pp. 281-287 (in Russian).
[b13]

via grobid
Информация об авторе
[b14]

via grobid
Пономарева Светлана Владимировна -канд. физ.- мат. наук, доцент. Белорусский государственный уни- верситет (пр. Независимости, 4, 220050, Минск, Рес- публика Беларусь). Е-mail: demyanko@bsu.by. Information about the author
[b15]

via grobid
Ponomareva Svetlana V. -Ph. D. (Physics and Mathe- matics), Associate professor. Belarusian State University (4, Nezavisimosti Ave., 220050, Minsk, Republic of Belarus).
[b16]

via grobid
E-mail: demyanko@bsu.by.