Intelligent Neural Network Schemes for Multi-Class Classification release_w24oqjq6zrbshens27u3nrfwpy

by You, Wu, Lee, Liu

Entity Metadata (schema)

abstracts[] {'sha1': 'f979592993f509dbaddc90324a38f954304555ea', 'content': 'Multi-class classification is a very important technique in engineering applications, e.g., mechanical systems, mechanics and design innovations, applied materials in nanotechnologies, etc. A large amount of research is done for single-label classification where objects are associated with a single category. However, in many application domains, an object can belong to two or more categories, and multi-label classification is needed. Traditionally, statistical methods were used; recently, machine learning techniques, in particular neural networks, have been proposed to solve the multi-class classification problem. In this paper, we develop radial basis function (RBF)-based neural network schemes for single-label and multi-label classification, respectively. The number of hidden nodes and the parameters involved with the basis functions are determined automatically by applying an iterative self-constructing clustering algorithm to the given training dataset, and biases and weights are derived optimally by least squares. Dimensionality reduction techniques are adopted and integrated to help reduce the overfitting problem associated with the RBF networks. Experimental results from benchmark datasets are presented to show the effectiveness of the proposed schemes.', 'mimetype': 'application/xml+jats', 'lang': None}
container {'state': 'active', 'ident': 'smrngspzhzce7dy6ofycrfxbim', 'revision': 'dd9ed689-663f-41c8-8800-569beb7b69bd', 'redirect': None, 'extra': {'abbrev': 'Appl Sci (Basel)', 'country': 'ch', 'default_license': 'CC-BY', 'doaj': {'archive': ['CLOCKSS'], 'as_of': '2022-07-06', 'default_license': 'CC-BY', 'seal': True}, 'kbart': {'clockss': {'year_spans': [[2011, 2022]]}}, 'languages': ['en'], 'publisher_type': 'oa', 'road': {'as_of': '2018-01-24'}, 'sherpa_romeo': {'color': 'green'}, 'urls': ['http://www.e-helvetica.nb.admin.ch/directAccess?callnumber=bel-217814', 'https://www.mdpi.com/journal/applsci', 'http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:ch:bel-217814', 'http://www.mathem.pub.ro/apps/']}, 'edit_extra': None, 'name': 'Applied Sciences', 'container_type': None, 'publication_status': None, 'publisher': 'MDPI AG', 'issnl': '2076-3417', 'issne': '2076-3417', 'issnp': '2076-3417', 'wikidata_qid': 'Q27725631'}
container_id smrngspzhzce7dy6ofycrfxbim
contribs[] {'index': 0, 'creator_id': None, 'creator': None, 'raw_name': 'You', 'given_name': None, 'surname': 'You', 'role': 'author', 'raw_affiliation': None, 'extra': {'seq': 'first'}}
{'index': 1, 'creator_id': None, 'creator': None, 'raw_name': 'Wu', 'given_name': None, 'surname': 'Wu', 'role': 'author', 'raw_affiliation': None, 'extra': None}
{'index': 2, 'creator_id': None, 'creator': None, 'raw_name': 'Lee', 'given_name': None, 'surname': 'Lee', 'role': 'author', 'raw_affiliation': None, 'extra': None}
{'index': 3, 'creator_id': None, 'creator': None, 'raw_name': 'Liu', 'given_name': None, 'surname': 'Liu', 'role': 'author', 'raw_affiliation': None, 'extra': None}
ext_ids {'doi': '10.3390/app9194036', 'wikidata_qid': None, 'isbn13': None, 'pmid': None, 'pmcid': None, 'core': None, 'arxiv': None, 'jstor': None, 'ark': None, 'mag': None, 'doaj': None, 'dblp': None, 'oai': None, 'hdl': None}
files[] {'state': 'active', 'ident': 'nqhotqajurgypg66mgnu2553xm', 'revision': 'ed377d5f-1785-43fc-863b-b034df8571d5', 'redirect': None, 'extra': {}, 'edit_extra': None, 'size': 3405129, 'md5': 'e89e52ae2a95c629fb0948f45bae3217', 'sha1': '61093c04019cd1215eb4adc962d4436a8ae3a42f', 'sha256': 'a851ef1df59eae6c7ed1cab43cd7d59244c67e8ed68341590ca86ed19380dcd7', 'urls': [{'url': 'https://web.archive.org/web/20200208002941/https://res.mdpi.com/d_attachment/applsci/applsci-09-04036/article_deploy/applsci-09-04036-v2.pdf', 'rel': 'webarchive'}, {'url': 'https://res.mdpi.com/d_attachment/applsci/applsci-09-04036/article_deploy/applsci-09-04036-v2.pdf', 'rel': 'publisher'}], 'mimetype': 'application/pdf', 'content_scope': None, 'release_ids': ['w24oqjq6zrbshens27u3nrfwpy'], 'releases': None}
filesets []
issue 19
language en
license_slug CC-BY
number
original_title
pages 4036
publisher MDPI AG
refs []
release_date 2019-09-26
release_stage published
release_type article-journal
release_year 2019
subtitle
title Intelligent Neural Network Schemes for Multi-Class Classification
version
volume
webcaptures []
withdrawn_date
withdrawn_status
withdrawn_year
work_id h55v57zk5bhhzgtczhqybsy43i
As JSON via API

Extra Metadata (raw JSON)

crossref.alternative-id ['app9194036']
crossref.funder [{'DOI': '10.13039/100007225', 'award': ['MOST-107-2221-E-110-065', 'MOST-107-2622-E-110-008-CC3', 'MOST-107-EPA-F-012-001'], 'doi-asserted-by': 'publisher', 'name': 'Ministry of Science and Technology'}, {'award': ['#NSYSUKMU 108-P042', 'MOST-106-2321-B-037-003'], 'name': 'Ministry of Science and Technolody, Taiwan'}]
crossref.license [{'URL': 'https://creativecommons.org/licenses/by/4.0/', 'content-version': 'unspecified', 'delay-in-days': 0, 'start': '2019-09-26T00:00:00Z'}]
crossref.type journal-article