Criteria of Wiener Type for Minimally Thin Sets and Rarefied Sets Associated with the Stationary Schrödinger Operator in a Cone
release_vwlowlmyuzbxbn6dom5azwidpq
by
Pinhong Long,
Zhiqiang Gao,
Guantie Deng
Abstract
We give some criteria for<jats:italic>a</jats:italic>-minimally thin sets and<jats:italic>a</jats:italic>-rarefied sets associated with the stationary Schrödinger operator at a fixed Martin boundary point or ∞ with respect to a cone. Moreover, we show that a positive superfunction on a cone behaves regularly outside an<jats:italic>a</jats:italic>-rarefied set. Finally we illustrate the relation between the<jats:italic>a</jats:italic>-minimally thin set and the<jats:italic>a</jats:italic>-rarefied set in a cone.
In application/xml+jats
format
Archived Files and Locations
application/pdf
222.7 kB
file_3i7rlptinrcqbb7zmvxfxebpiu
| |
application/pdf
2.0 MB
file_blmjx6ez2vhprarfxb7gbz4ubq
|
web.archive.org (webarchive) downloads.hindawi.com (publisher) |
application/pdf
666.3 kB
file_xio4wdwt5rhbfgcxm4sh43kywm
|
projecteuclid.org (web) web.archive.org (webarchive) |
Open Access Publication
In DOAJ
In ISSN ROAD
In Keepers Registry
ISSN-L:
1085-3375
access all versions, variants, and formats of this works (eg, pre-prints)
Crossref Metadata (via API)
Worldcat
SHERPA/RoMEO (journal policies)
wikidata.org
CORE.ac.uk
Semantic Scholar
Google Scholar