@article{feng_mccarty_1990, title={Chromatographic purification of the chloroplast ATP synthase (CF0-CF1) and the role of CF0 subunit IV in proton conduction}, volume={265}, abstractNote={Chromatographic procedures were developed to purify chloroplast ATP synthase (CF0-CF1) in large amounts and to resolve subunits from this enzyme. The ATP synthase thus obtained has high ATP-Pi exchange and Mg2(+)-ATPase activities upon incorporation into asolectin liposomes. The purity of this preparation was about 95%. By modifications of this chromatographic procedure, we purified subunit IV-deficient CF0-CF1, subunit IV-deficient CF0, and subunit IV. Both ATP-Pi exchange and Mg2(+)-ATPase activities were impaired by depletion of subunit IV from CF0-CF1. Partial restoration of these activities was obtained by reconstituting subunit IV-deficient CF0-CF1 with subunit IV. The impairment of these activities was likely caused by a loss in proton conductivity of CF0 upon removal of subunit IV. The dicyclohexylcarbodiimide-sensitive Mg2(+)-ATPase of subunit IV-deficient CF0-CF1 was not as sensitive to the depletion of subunit IV as ATP-Pi exchange. Nearly 90% of subunit IV could be removed, but Mg2(+)-ATPase activity was inhibited by only 40-60%. Thus subunit IV of CF0-CF1 may not participate directly in proton transfer but may have a role in organizing and/or stabilizing CF0 structure.}, number={21}, author={Feng, Y and McCarty, R E}, year={1990}, month={Jul} }