Redefining and interpreting genomic relationships of metafounders
release_uepl3sjtorcvjbghh4tep4ja44
by
Andres Legarra,
Matias Bermann,
Quanshun Mei,
Ole F. Christensen
2024 Volume 56, Issue 1
Abstract
<jats:title>Abstract</jats:title>Metafounders are a useful concept to characterize relationships within and across populations, and to help genetic evaluations because they help modelling the means and variances of unknown base population animals. Current definitions of metafounder relationships are sensitive to the choice of reference alleles and have not been compared to their counterparts in population genetics—namely, heterozygosities, <jats:italic>F</jats:italic><jats:sub><jats:italic>ST</jats:italic></jats:sub> coefficients, and genetic distances. We redefine the relationships across populations with an arbitrary base of a maximum heterozygosity population in Hardy–Weinberg equilibrium. Then, the relationship between or within populations is a cross-product of the form <jats:inline-formula><jats:alternatives><jats:tex-math>$${\Gamma }_{\left(b,{b}^{\prime}\right)}=\left(\frac{2}{n}\right)\left(2{\mathbf{p}}_{b}-\mathbf{1}\right)\left(2{\mathbf{p}}_{{b}^{\prime}}-\mathbf{1}\right)^{\prime}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msub>
<mml:mi>Γ</mml:mi>
<mml:mfenced>
<mml:mi>b</mml:mi>
<mml:mo>,</mml:mo>
<mml:msup>
<mml:mrow>
<mml:mi>b</mml:mi>
</mml:mrow>
<mml:mo>′</mml:mo>
</mml:msup>
</mml:mfenced>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mfenced>
<mml:mfrac>
<mml:mn>2</mml:mn>
<mml:mi>n</mml:mi>
</mml:mfrac>
</mml:mfenced>
<mml:mfenced>
<mml:mn>2</mml:mn>
<mml:msub>
<mml:mi>p</mml:mi>
<mml:mi>b</mml:mi>
</mml:msub>
<mml:mo>-</mml:mo>
<mml:mn>1</mml:mn>
</mml:mfenced>
<mml:msup>
<mml:mfenced>
<mml:mn>2</mml:mn>
<mml:msub>
<mml:mi>p</mml:mi>
<mml:msup>
<mml:mrow>
<mml:mi>b</mml:mi>
</mml:mrow>
<mml:mo>′</mml:mo>
</mml:msup>
</mml:msub>
<mml:mo>-</mml:mo>
<mml:mn>1</mml:mn>
</mml:mfenced>
<mml:mo>′</mml:mo>
</mml:msup>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> with <jats:inline-formula><jats:alternatives><jats:tex-math>$$\mathbf{p}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mi>p</mml:mi>
</mml:math></jats:alternatives></jats:inline-formula> being vectors of allele frequencies at <jats:inline-formula><jats:alternatives><jats:tex-math>$$n$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mi>n</mml:mi>
</mml:math></jats:alternatives></jats:inline-formula> markers in populations <jats:inline-formula><jats:alternatives><jats:tex-math>$$b$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mi>b</mml:mi>
</mml:math></jats:alternatives></jats:inline-formula> and <jats:inline-formula><jats:alternatives><jats:tex-math>$$b^{\prime}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msup>
<mml:mi>b</mml:mi>
<mml:mo>′</mml:mo>
</mml:msup>
</mml:math></jats:alternatives></jats:inline-formula>. This is simply the genomic relationship of two pseudo-individuals whose genotypes are equal to twice the allele frequencies. We also show that this coding is invariant to the choice of reference alleles. In addition, standard population genetics metrics (inbreeding coefficients of various forms; <jats:italic>F</jats:italic><jats:sub><jats:italic>ST</jats:italic></jats:sub> differentiation coefficients; segregation variance; and Nei's genetic distance) can be obtained from elements of matrix <jats:inline-formula><jats:alternatives><jats:tex-math>$${\varvec{\Gamma}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>Γ</mml:mi>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>.
In application/xml+jats
format
Archived Files and Locations
application/pdf
1.1 MB
file_vxsfxx5dazderk52lz4xlmtzpa
|
gsejournal.biomedcentral.com (publisher) web.archive.org (webarchive) |
Open Access Publication
In DOAJ
In ISSN ROAD
In Keepers Registry
ISSN-L:
0999-193X
access all versions, variants, and formats of this works (eg, pre-prints)
Crossref Metadata (via API)
Worldcat
SHERPA/RoMEO (journal policies)
wikidata.org
CORE.ac.uk
Semantic Scholar
Google Scholar