Measurement report: Characterization and source apportionment of coarse particulate matter in Hong Kong: Insights into the constituents of unidentified mass and source origins in a coastal city in southern China release_uannqq2srvcrrhyqzfirytrere

by Wong, Yee Ka, Kin Man Liu, Claisen Yeung, Kenneth K. M. Leung, Jian Zhen Yu

Released as a post by Copernicus GmbH.

2021  

Abstract

Abstract. Coarse particulate matter (i.e., PM with aerodynamic diameter between 2.5 and 10 micrometers or PMcoarse) has been increasingly recognized of its importance in PM10 regulation because of its growing proportion in PM10 and the accumulative evidence for its adverse health impact. In this work, we present comprehensive PMcoarse speciation results obtained through a one-year long (January 2020–February 2021) joint PM10 and PM2.5 chemical speciation study in Hong Kong, a coastal and highly urbanized city in southern China. The annual average concentration of PMcoarse is 14.9 ± 8.6 μg m–3 (±standard deviation), accounting for 45 % of PM10 (32.9 ± 18.5 μg m–3). The measured chemical components explain ~75 % of the PMcoarse mass. The unexplained part is contributed by unmeasured geological components and residue liquid water content, supported by analyses by positive matrix factorization (PMF) and the thermodynamic equilibrium model ISORROPIA II. The PMcoarse mass is apportioned to four sources resolved by PMF, namely soil dust, copper-rich dust, fresh sea salt, and an aged sea salt factor containing secondary inorganic aerosols (mostly nitrate). Back-trajectory cluster analysis reveals significant variations in source contributions with the air mass origin. Under the influence of marine air mass, PMcoarse is the lowest (average = 8.0 μg m–3) and sea salt is the largest contributor (47 %), followed by the two dust factors (38 % in total). When the site receives air mass from the northern continental region, PMcoarse increased substantially to 21.2 μg m–3, with the two dust factors contributing 90 % of the aerosol mass. The potential dust source areas are mapped using the Concentration-Weighted Trajectory technique, showing either the Greater Bay Area or the greater part of southern China as the origin of fugitive dust emissions leading to elevated ambient PMcoarse loadings in Hong Kong. This study, first of this kind in our region, provides highly relevant guidance to other locations with similar monitoring needs. Additionally, the study findings point to the needs for further research on the sources, transport, aerosol processes, and health effects of PMcoarse.
In application/xml+jats format

Archived Files and Locations

application/pdf   1.5 MB
file_mf6xweizxbg6xce7l3vk4lr4gq
acp.copernicus.org (publisher)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  post
Stage   unknown
Date   2021-12-22
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: 43232584-5a57-411b-9eea-c3c3285887cb
API URL: JSON