Computing the Growth of Small Cracks in the Assist Round Robin Helicopter Challenge
release_tvko57g5indiheulmxdj34yqqy
by
Rhys Jones,
daren peng,
Raman Singh,
Pu Huang
Abstract
Sustainment issues associated with military helicopters have drawn attention to the growth of small cracks under a helicopter flight load spectrum. One particular issue is how to simplify (reduce) a measured spectrum to reduce the time and complexity of full-scale helicopter fatigue tests. Given the costs and the time scales associated with performing tests, a means of computationally assessing the effect of a reduced spectrum is desirable. Unfortunately, whilst there have been a number of studies into how to perform a damage tolerant assessment of helicopter structural parts there is currently no equivalent study into how to perform the durability analysis needed to determine the economic life of a helicopter component. To this end, the present paper describes a computational study into small crack growth in AA7075-T7351 under several (reduced) helicopter flight load spectra. This study reveals that the Hartman-Schijve (HS) variant of the NASGRO crack growth equation can reasonably accurately compute the growth of small naturally occurring cracks in AA7075-T7351 under several simplified variants of a measured Black Hawk flight load spectra.
In application/xml+jats
format
Archived Files and Locations
application/pdf
3.8 MB
file_eccgsmqs3bhgbauygxwgnbz7xi
|
res.mdpi.com (publisher) web.archive.org (webarchive) |
Open Access Publication
In DOAJ
In ISSN ROAD
In Keepers Registry
ISSN-L:
2075-4701
access all versions, variants, and formats of this works (eg, pre-prints)
Crossref Metadata (via API)
Worldcat
SHERPA/RoMEO (journal policies)
wikidata.org
CORE.ac.uk
Semantic Scholar
Google Scholar