Advances in Contextual Action Recognition: Automatic Cheating Detection Using Machine Learning Techniques
release_savevcmjmrff5i6hcwf4vfxmhi
by
Fairouz Hussein,
Ayat Al-Ahmad,
Subhieh El-Salhi,
Esra'a Alshdaifat,
Mo'taz Al-Hami
Abstract
Teaching and exam proctoring represent key pillars of the education system. Human proctoring, which involves visually monitoring examinees throughout exams, is an important part of assessing the academic process. The capacity to proctor examinations is a critical component of educational scalability. However, such approaches are time-consuming and expensive. In this paper, we present a new framework for the learning and classification of cheating video sequences. This kind of study aids in the early detection of students' cheating. Furthermore, we introduce a new dataset, "actions of student cheating in paper-based exams". The dataset consists of suspicious actions in an exam environment. Five classes of cheating were performed by eight different actors. Each pair of subjects conducted five distinct cheating activities. To evaluate the performance of the proposed framework, we conducted experiments on action recognition tasks at the frame level using five types of well-known features. The findings from the experiments on the framework were impressive and substantial.
In application/xml+jats
format
Archived Files and Locations
application/pdf
711.8 kB
file_inl22vcpn5dznlhoypi6yclksm
|
mdpi-res.com (publisher) web.archive.org (webarchive) |
Open Access Publication
In DOAJ
In ISSN ROAD
In Keepers Registry
ISSN-L:
2306-5729
access all versions, variants, and formats of this works (eg, pre-prints)
Crossref Metadata (via API)
Worldcat
SHERPA/RoMEO (journal policies)
wikidata.org
CORE.ac.uk
Semantic Scholar
Google Scholar