Exploring correlations between HEFT Higgs couplings $$\kappa _V$$ and $$\kappa _{2V}$$ via HH production at $$e^+e^-$$ colliders
release_saclzy34mfh4nfbux2km6othai
by
J. M. Dávila,
D. Domenech,
M. J. Herrero,
Roberto A. Morales
2024 Volume 84, Issue 5
Abstract
<jats:title>Abstract</jats:title>In this work we explore the phenomenological implications at future <jats:inline-formula><jats:alternatives><jats:tex-math>$$e^+e^-$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msup>
<mml:mi>e</mml:mi>
<mml:mo>+</mml:mo>
</mml:msup>
<mml:msup>
<mml:mi>e</mml:mi>
<mml:mo>-</mml:mo>
</mml:msup>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> colliders of assuming anomalous couplings of the Higgs boson to gauge bosons <jats:italic>HVV</jats:italic> and <jats:italic>HHVV</jats:italic><jats:inline-formula><jats:alternatives><jats:tex-math>$$(V=W,Z)$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>V</mml:mi>
<mml:mo>=</mml:mo>
<mml:mi>W</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>Z</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> given by the <jats:inline-formula><jats:alternatives><jats:tex-math>$$\kappa $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mi>κ</mml:mi>
</mml:math></jats:alternatives></jats:inline-formula>-modifiers with respect to the Standard Model couplings, <jats:inline-formula><jats:alternatives><jats:tex-math>$$\kappa _V$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mi>κ</mml:mi>
<mml:mi>V</mml:mi>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula> and <jats:inline-formula><jats:alternatives><jats:tex-math>$$\kappa _{2V},$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msub>
<mml:mi>κ</mml:mi>
<mml:mrow>
<mml:mn>2</mml:mn>
<mml:mi>V</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>,</mml:mo>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> respectively. For this study we use the Higgs Effective Field Theory (HEFT) where these two <jats:inline-formula><jats:alternatives><jats:tex-math>$$\kappa $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mi>κ</mml:mi>
</mml:math></jats:alternatives></jats:inline-formula> parameters are identified with the two most relevant effective couplings at leading order, concretely <jats:inline-formula><jats:alternatives><jats:tex-math>$$a=\kappa _V$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>a</mml:mi>
<mml:mo>=</mml:mo>
<mml:msub>
<mml:mi>κ</mml:mi>
<mml:mi>V</mml:mi>
</mml:msub>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> and <jats:inline-formula><jats:alternatives><jats:tex-math>$$b=\kappa _{2V}.$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>b</mml:mi>
<mml:mo>=</mml:mo>
<mml:msub>
<mml:mi>κ</mml:mi>
<mml:mrow>
<mml:mn>2</mml:mn>
<mml:mi>V</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>.</mml:mo>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> Our focus is put on these two couplings and their potential correlations which we believe carry interesting information on the underlying ultraviolet theory. The particular studied process is <jats:inline-formula><jats:alternatives><jats:tex-math>$$e^+e^- \rightarrow HH \nu \bar{\nu },$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msup>
<mml:mi>e</mml:mi>
<mml:mo>+</mml:mo>
</mml:msup>
<mml:msup>
<mml:mi>e</mml:mi>
<mml:mo>-</mml:mo>
</mml:msup>
<mml:mo>→</mml:mo>
<mml:mi>H</mml:mi>
<mml:mi>H</mml:mi>
<mml:mi>ν</mml:mi>
<mml:mover>
<mml:mrow>
<mml:mi>ν</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mo>¯</mml:mo>
</mml:mrow>
</mml:mover>
<mml:mo>,</mml:mo>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> where the vector boson scattering subprocess <jats:inline-formula><jats:alternatives><jats:tex-math>$$WW \rightarrow HH$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>W</mml:mi>
<mml:mi>W</mml:mi>
<mml:mo>→</mml:mo>
<mml:mi>H</mml:mi>
<mml:mi>H</mml:mi>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> plays a central role, specially at the largest planned energy colliders. Our detailed study of this process as a function of the energy and the angular variables indicates that the produced Higgs bosons in the BSM scenarios will have in general a high transversality as compared to the SM case if <jats:inline-formula><jats:alternatives><jats:tex-math>$$\kappa _V^2 \ne \kappa _{2V}.$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msubsup>
<mml:mi>κ</mml:mi>
<mml:mi>V</mml:mi>
<mml:mn>2</mml:mn>
</mml:msubsup>
<mml:mo>≠</mml:mo>
<mml:msub>
<mml:mi>κ</mml:mi>
<mml:mrow>
<mml:mn>2</mml:mn>
<mml:mi>V</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>.</mml:mo>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> In order to enhance the sensitivity to these HEFT parameters <jats:inline-formula><jats:alternatives><jats:tex-math>$$\kappa _V$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mi>κ</mml:mi>
<mml:mi>V</mml:mi>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula> and <jats:inline-formula><jats:alternatives><jats:tex-math>$$\kappa _{2V}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mi>κ</mml:mi>
<mml:mrow>
<mml:mn>2</mml:mn>
<mml:mi>V</mml:mi>
</mml:mrow>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula> and their potential correlations we propose here some selected differential cross sections for the <jats:inline-formula><jats:alternatives><jats:tex-math>$$e^+e^- \rightarrow HH \nu \bar{\nu }$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msup>
<mml:mi>e</mml:mi>
<mml:mo>+</mml:mo>
</mml:msup>
<mml:msup>
<mml:mi>e</mml:mi>
<mml:mo>-</mml:mo>
</mml:msup>
<mml:mo>→</mml:mo>
<mml:mi>H</mml:mi>
<mml:mi>H</mml:mi>
<mml:mi>ν</mml:mi>
<mml:mover>
<mml:mrow>
<mml:mi>ν</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mo>¯</mml:mo>
</mml:mrow>
</mml:mover>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> process, where different kinematic properties of the BSM case with respect to the SM are manifested. Finally, we will focus on the dominant Higgs decays to <jats:inline-formula><jats:alternatives><jats:tex-math>$$b {\bar{b}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>b</mml:mi>
<mml:mover>
<mml:mrow>
<mml:mi>b</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mo>¯</mml:mo>
</mml:mrow>
</mml:mover>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> pairs leading to final events with 4 <jats:italic>b</jats:italic>-jets and missing transverse energy from the undetected neutrinos and will provide the expected accessibility to the <jats:inline-formula><jats:alternatives><jats:tex-math>$$(\kappa _V,\kappa _{2V})$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:msub>
<mml:mi>κ</mml:mi>
<mml:mi>V</mml:mi>
</mml:msub>
<mml:mo>,</mml:mo>
<mml:msub>
<mml:mi>κ</mml:mi>
<mml:mrow>
<mml:mn>2</mml:mn>
<mml:mi>V</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> effective couplings and their potential correlations. In our study we will consider the three projected energies for <jats:inline-formula><jats:alternatives><jats:tex-math>$$e^+e^-$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msup>
<mml:mi>e</mml:mi>
<mml:mo>+</mml:mo>
</mml:msup>
<mml:msup>
<mml:mi>e</mml:mi>
<mml:mo>-</mml:mo>
</mml:msup>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> colliders of 500 GeV, 1000 GeV and 3000 GeV.
In application/xml+jats
format
Archived Files and Locations
application/pdf
3.1 MB
file_pgqbzym5nzenlhpqavxyqygcnq
|
link.springer.com (publisher) web.archive.org (webarchive) |
access all versions, variants, and formats of this works (eg, pre-prints)
Crossref Metadata (via API)
Worldcat
SHERPA/RoMEO (journal policies)
wikidata.org
CORE.ac.uk
Semantic Scholar
Google Scholar