Lih Wang's and Dittert's conjectures on permanents
release_s5u3ntiac5f67ef5bhjc6n7kae
by
Divya K. Udayan,
Kanagasabapathi Somasundaram
Abstract
<jats:title>Abstract</jats:title>
Let <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_001.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:msub>
<m:mrow>
<m:mi mathvariant="normal">Ω</m:mi>
</m:mrow>
<m:mrow>
<m:mi>n</m:mi>
</m:mrow>
</m:msub>
</m:math>
<jats:tex-math>{\Omega }_{n}</jats:tex-math>
</jats:alternatives>
</jats:inline-formula> denote the set of all doubly stochastic matrices of order <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_002.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>n</m:mi>
</m:math>
<jats:tex-math>n</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>. Lih and Wang conjectured that for <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_003.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>n</m:mi>
<m:mo>≥</m:mo>
<m:mn>3</m:mn>
</m:math>
<jats:tex-math>n\ge 3</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>, per<jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_004.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mrow>
<m:mo>(</m:mo>
<m:mrow>
<m:mi>t</m:mi>
<m:msub>
<m:mrow>
<m:mi>J</m:mi>
</m:mrow>
<m:mrow>
<m:mi>n</m:mi>
</m:mrow>
</m:msub>
<m:mo>+</m:mo>
<m:mrow>
<m:mo>(</m:mo>
<m:mrow>
<m:mn>1</m:mn>
<m:mo>−</m:mo>
<m:mi>t</m:mi>
</m:mrow>
<m:mo>)</m:mo>
</m:mrow>
<m:mi>A</m:mi>
</m:mrow>
<m:mo>)</m:mo>
</m:mrow>
<m:mo>≤</m:mo>
<m:mi>t</m:mi>
</m:math>
<jats:tex-math>\left(t{J}_{n}+\left(1-t)A)\le t</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>per<jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_005.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:msub>
<m:mrow>
<m:mi>J</m:mi>
</m:mrow>
<m:mrow>
<m:mi>n</m:mi>
</m:mrow>
</m:msub>
<m:mo>+</m:mo>
<m:mrow>
<m:mo>(</m:mo>
<m:mrow>
<m:mn>1</m:mn>
<m:mo>−</m:mo>
<m:mi>t</m:mi>
</m:mrow>
<m:mo>)</m:mo>
</m:mrow>
</m:math>
<jats:tex-math>{J}_{n}+\left(1-t)</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>per<jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_006.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>A</m:mi>
</m:math>
<jats:tex-math>A</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>, for all <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_007.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>A</m:mi>
<m:mo>∈</m:mo>
<m:msub>
<m:mrow>
<m:mi mathvariant="normal">Ω</m:mi>
</m:mrow>
<m:mrow>
<m:mi>n</m:mi>
</m:mrow>
</m:msub>
</m:math>
<jats:tex-math>A\in {\Omega }_{n}</jats:tex-math>
</jats:alternatives>
</jats:inline-formula> and all <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_008.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>t</m:mi>
<m:mo>∈</m:mo>
<m:mrow>
<m:mo>[</m:mo>
<m:mrow>
<m:mn>0.5</m:mn>
<m:mo>,</m:mo>
<m:mn>1</m:mn>
</m:mrow>
<m:mo>]</m:mo>
</m:mrow>
</m:math>
<jats:tex-math>t\in \left[0.5,1]</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>, where <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_009.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:msub>
<m:mrow>
<m:mi>J</m:mi>
</m:mrow>
<m:mrow>
<m:mi>n</m:mi>
</m:mrow>
</m:msub>
</m:math>
<jats:tex-math>{J}_{n}</jats:tex-math>
</jats:alternatives>
</jats:inline-formula> is the <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_010.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>n</m:mi>
<m:mo>×</m:mo>
<m:mi>n</m:mi>
</m:math>
<jats:tex-math>n\times n</jats:tex-math>
</jats:alternatives>
</jats:inline-formula> matrix with each entry equal to <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_011.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mfrac>
<m:mrow>
<m:mn>1</m:mn>
</m:mrow>
<m:mrow>
<m:mi>n</m:mi>
</m:mrow>
</m:mfrac>
</m:math>
<jats:tex-math>\frac{1}{n}</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>. This conjecture was proved partially for <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_012.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>n</m:mi>
<m:mo>≤</m:mo>
<m:mn>5</m:mn>
</m:math>
<jats:tex-math>n\le 5</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>. Let <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_013.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:msub>
<m:mrow>
<m:mi>K</m:mi>
</m:mrow>
<m:mrow>
<m:mi>n</m:mi>
</m:mrow>
</m:msub>
</m:math>
<jats:tex-math>{K}_{n}</jats:tex-math>
</jats:alternatives>
</jats:inline-formula> denote the set of nonnegative <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_014.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>n</m:mi>
<m:mo>×</m:mo>
<m:mi>n</m:mi>
</m:math>
<jats:tex-math>n\times n</jats:tex-math>
</jats:alternatives>
</jats:inline-formula> matrices whose elements have sum <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_015.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>n</m:mi>
</m:math>
<jats:tex-math>n</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>. Let <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_016.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>ϕ</m:mi>
</m:math>
<jats:tex-math>\phi </jats:tex-math>
</jats:alternatives>
</jats:inline-formula> be a real valued function defined on <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_017.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:msub>
<m:mrow>
<m:mi>K</m:mi>
</m:mrow>
<m:mrow>
<m:mi>n</m:mi>
</m:mrow>
</m:msub>
</m:math>
<jats:tex-math>{K}_{n}</jats:tex-math>
</jats:alternatives>
</jats:inline-formula> by <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_018.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>ϕ</m:mi>
<m:mrow>
<m:mo>(</m:mo>
<m:mrow>
<m:mi>X</m:mi>
</m:mrow>
<m:mo>)</m:mo>
</m:mrow>
<m:mo>=</m:mo>
<m:msubsup>
<m:mrow>
<m:mrow>
<m:mo>∏</m:mo>
</m:mrow>
</m:mrow>
<m:mrow>
<m:mi>i</m:mi>
<m:mo>=</m:mo>
<m:mn>1</m:mn>
</m:mrow>
<m:mrow>
<m:mi>n</m:mi>
</m:mrow>
</m:msubsup>
<m:msub>
<m:mrow>
<m:mi>r</m:mi>
</m:mrow>
<m:mrow>
<m:mi>i</m:mi>
</m:mrow>
</m:msub>
<m:mo>+</m:mo>
<m:msubsup>
<m:mrow>
<m:mrow>
<m:mo>∏</m:mo>
</m:mrow>
</m:mrow>
<m:mrow>
<m:mi>j</m:mi>
<m:mo>=</m:mo>
<m:mn>1</m:mn>
</m:mrow>
<m:mrow>
<m:mi>n</m:mi>
</m:mrow>
</m:msubsup>
<m:msub>
<m:mrow>
<m:mi>c</m:mi>
</m:mrow>
<m:mrow>
<m:mi>j</m:mi>
</m:mrow>
</m:msub>
</m:math>
<jats:tex-math>\phi \left(X)={\prod }_{i=1}^{n}{r}_{i}+{\prod }_{j=1}^{n}{c}_{j}</jats:tex-math>
</jats:alternatives>
</jats:inline-formula> - per<jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_019.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>X</m:mi>
</m:math>
<jats:tex-math>X</jats:tex-math>
</jats:alternatives>
</jats:inline-formula> for <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_020.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>X</m:mi>
<m:mo>∈</m:mo>
<m:msub>
<m:mrow>
<m:mi>K</m:mi>
</m:mrow>
<m:mrow>
<m:mi>n</m:mi>
</m:mrow>
</m:msub>
</m:math>
<jats:tex-math>X\in {K}_{n}</jats:tex-math>
</jats:alternatives>
</jats:inline-formula> with row sum vector <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_021.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mrow>
<m:mo>(</m:mo>
<m:mrow>
<m:msub>
<m:mrow>
<m:mi>r</m:mi>
</m:mrow>
<m:mrow>
<m:mn>1</m:mn>
</m:mrow>
</m:msub>
<m:mo>,</m:mo>
<m:msub>
<m:mrow>
<m:mi>r</m:mi>
</m:mrow>
<m:mrow>
<m:mn>2</m:mn>
</m:mrow>
</m:msub>
<m:mo>,</m:mo>
<m:mrow>
<m:mo>…</m:mo>
</m:mrow>
<m:msub>
<m:mrow>
<m:mi>r</m:mi>
</m:mrow>
<m:mrow>
<m:mi>n</m:mi>
</m:mrow>
</m:msub>
</m:mrow>
<m:mo>)</m:mo>
</m:mrow>
</m:math>
<jats:tex-math>\left({r}_{1},{r}_{2},\ldots {r}_{n})</jats:tex-math>
</jats:alternatives>
</jats:inline-formula> and column sum vector <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_022.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mrow>
<m:mo>(</m:mo>
<m:mrow>
<m:msub>
<m:mrow>
<m:mi>c</m:mi>
</m:mrow>
<m:mrow>
<m:mn>1</m:mn>
</m:mrow>
</m:msub>
<m:mo>,</m:mo>
<m:msub>
<m:mrow>
<m:mi>c</m:mi>
</m:mrow>
<m:mrow>
<m:mn>2</m:mn>
</m:mrow>
</m:msub>
<m:mo>,</m:mo>
<m:mrow>
<m:mo>…</m:mo>
</m:mrow>
<m:msub>
<m:mrow>
<m:mi>c</m:mi>
</m:mrow>
<m:mrow>
<m:mi>n</m:mi>
</m:mrow>
</m:msub>
</m:mrow>
<m:mo>)</m:mo>
</m:mrow>
</m:math>
<jats:tex-math>\left({c}_{1},{c}_{2},\ldots {c}_{n})</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>. A matrix <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_023.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>A</m:mi>
<m:mo>∈</m:mo>
<m:msub>
<m:mrow>
<m:mi>K</m:mi>
</m:mrow>
<m:mrow>
<m:mi>n</m:mi>
</m:mrow>
</m:msub>
</m:math>
<jats:tex-math>A\in {K}_{n}</jats:tex-math>
</jats:alternatives>
</jats:inline-formula> is called a <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_024.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>ϕ</m:mi>
</m:math>
<jats:tex-math>\phi </jats:tex-math>
</jats:alternatives>
</jats:inline-formula>-maximizing matrix if <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_025.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>ϕ</m:mi>
<m:mrow>
<m:mo>(</m:mo>
<m:mrow>
<m:mi>A</m:mi>
</m:mrow>
<m:mo>)</m:mo>
</m:mrow>
<m:mo>≥</m:mo>
<m:mi>ϕ</m:mi>
<m:mrow>
<m:mo>(</m:mo>
<m:mrow>
<m:mi>X</m:mi>
</m:mrow>
<m:mo>)</m:mo>
</m:mrow>
</m:math>
<jats:tex-math>\phi \left(A)\ge \phi \left(X)</jats:tex-math>
</jats:alternatives>
</jats:inline-formula> for all <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_026.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>X</m:mi>
<m:mo>∈</m:mo>
<m:msub>
<m:mrow>
<m:mi>K</m:mi>
</m:mrow>
<m:mrow>
<m:mi>n</m:mi>
</m:mrow>
</m:msub>
</m:math>
<jats:tex-math>X\in {K}_{n}</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>. Dittert conjectured that <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_027.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:msub>
<m:mrow>
<m:mi>J</m:mi>
</m:mrow>
<m:mrow>
<m:mi>n</m:mi>
</m:mrow>
</m:msub>
</m:math>
<jats:tex-math>{J}_{n}</jats:tex-math>
</jats:alternatives>
</jats:inline-formula> is the unique <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_028.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>ϕ</m:mi>
</m:math>
<jats:tex-math>\phi </jats:tex-math>
</jats:alternatives>
</jats:inline-formula>-maximizing matrix on <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_029.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:msub>
<m:mrow>
<m:mi>K</m:mi>
</m:mrow>
<m:mrow>
<m:mi>n</m:mi>
</m:mrow>
</m:msub>
</m:math>
<jats:tex-math>{K}_{n}</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>. Sinkhorn proved the conjecture for <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_030.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>n</m:mi>
<m:mo>=</m:mo>
<m:mn>2</m:mn>
</m:math>
<jats:tex-math>n=2</jats:tex-math>
</jats:alternatives>
</jats:inline-formula> and Hwang proved it for <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_031.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>n</m:mi>
<m:mo>=</m:mo>
<m:mn>3</m:mn>
</m:math>
<jats:tex-math>n=3</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>. In this article, we prove the Lih and Wang partially for <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_032.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>n</m:mi>
<m:mo>=</m:mo>
<m:mn>6</m:mn>
</m:math>
<jats:tex-math>n=6</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>. It is also proved that if <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_033.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>A</m:mi>
</m:math>
<jats:tex-math>A</jats:tex-math>
</jats:alternatives>
</jats:inline-formula> is a <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_034.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>ϕ</m:mi>
</m:math>
<jats:tex-math>\phi </jats:tex-math>
</jats:alternatives>
</jats:inline-formula>-maximizing matrix on <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_035.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:msub>
<m:mrow>
<m:mi>K</m:mi>
</m:mrow>
<m:mrow>
<m:mn>4</m:mn>
</m:mrow>
</m:msub>
</m:math>
<jats:tex-math>{K}_{4}</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>, then <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2024-0006_eq_036.png"/>
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>A</m:mi>
</m:math>
<jats:tex-math>A</jats:tex-math>
</jats:alternatives>
</jats:inline-formula> is fully indecomposable.
In application/xml+jats
format
Archived Files and Locations
application/pdf
3.7 MB
file_3qixe5acqrfcjeunvztu2rkkpm
|
www.degruyter.com (publisher) web.archive.org (webarchive) |
Open Access Publication
In DOAJ
In ISSN ROAD
In Keepers Registry
ISSN-L:
2300-7451
access all versions, variants, and formats of this works (eg, pre-prints)
Crossref Metadata (via API)
Worldcat
SHERPA/RoMEO (journal policies)
wikidata.org
CORE.ac.uk
Semantic Scholar
Google Scholar