The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles release_rsq5b7eee5alpecnx23z2hf35y

by A. Ganopolski, R. Calov

Cited By

References to this release by other works.
Fuzzy reference matching is a work in progress!
Read more about quality, completeness, and caveats in the fatcat guide.
Showing 1 - 30 of 149 references (in 203ms)

via crossref
Astronomical forcing of vegetation and climate change during the Late Pliocene–Early Pleistocene of the Nihewan Basin, North China
Zhen Zhang, Yuecong Li, Guoqiang Ding, Baoshuo Fan, Shuoqiang Da, Qinghai Xu, Yong Wang, Zhenqing Chi (+ more)
2021   Quaternary International
doi:10.1016/j.quaint.2021.07.017 

via grobid
Influence of the choice of insolation forcing on the results of a conceptual glacial cycle model [post]
Gaëlle Leloup, Didier Paillard
2021    unpublished
doi:10.5194/cp-2021-119 
web.archive.org [PDF]

via grobid
A theory of glacial cycles: resolving Pleistocene puzzles [post]
Hsien-Wang Ou
2021    unpublished
doi:10.5194/cp-2021-94 
web.archive.org [PDF]

via crossref
Drivers of river reactivation in North Africa during the last glacial cycle
Cécile L. Blanchet, Anne H. Osborne, Rik Tjallingii, Werner Ehrmann, Tobias Friedrich, Axel Timmermann, Warner Brückmann, Martin Frank
2021   Nature Geoscience
doi:10.1038/s41561-020-00671-3 

via grobid
The model has been tuned to the late Pleistocene variability. Why not to the early Pleistocene? [peer_review]
2021    unpublished
doi:10.5194/esd-2021-2-cc1 
web.archive.org [PDF]

via fatcat-crossref
The transient impact of the African monsoon on Plio-Pleistocene Mediterranean sediments
Bas de Boer, Marit Peters, Lucas J. Lourens
2021   Climate of the Past
doi:10.5194/cp-17-331-2021 
web.archive.org [PDF]

via crossref
Different environmental variables predict body and brain size evolution in Homo
Manuel Will, Mario Krapp, Jay T. Stock, Andrea Manica
2021   Nature Communications
doi:10.1038/s41467-021-24290-7  pmcid:PMC8266824  pmid:34238930 

via fatcat-crossref
Reconstructing the evolution of ice sheets, sea level, and atmospheric CO<sub>2</sub> during the past 3.6 million years
Constantijn J. Berends, Bas de Boer, Roderik S. W. van de Wal
2021   Climate of the Past
doi:10.5194/cp-17-361-2021 
web.archive.org [PDF]

via crossref
Modeling the Greenland englacial stratigraphy
Andreas Born, Alexander Robinson
2021   The Cryosphere
doi:10.5194/tc-15-4539-2021 
web.archive.org [PDF]

via crossref
James Croll and geological archives: testing astronomical theories of ice ages
Polychronis C. TZEDAKIS, Eric W. WOLFF
2021   Earth and environmental science transactions of the Royal Society of Edinburgh
doi:10.1017/s1755691021000177 

via grobid
Prolagus Pomel, 1853 (Lagomorpha, Mammalia) in the framework of the Pliocene faunal rearrangements in central Europe
Stanislav ČERMÁK, Chiara ANGELONE, Blanca MONCUNILL-SOLÉ
2021   Comptes rendus. Palevol
doi:10.5852/cr-palevol2021v20a28 
web.archive.org [PDF]

via grobid
Regional Climate Modelling over Europe at Glacial Times
Patricio Andrés Velásquez Álvarez
2021  
doi:10.48549/2945 
web.archive.org [PDF]

via crossref
On the Cause of the Mid‐Pleistocene Transition
C. J. Berends, P. Köhler, L. J. Lourens, R. S. W. van de Wal
2021   Reviews of Geophysics
doi:10.1029/2020rg000727 
web.archive.org [PDF]

via fatcat-pubmed
A statistics-based reconstruction of high-resolution global terrestrial climate for the last 800,000 years
Mario Krapp, Robert M Beyer, Stephen L Edmundson, Paul J Valdes, Andrea Manica
2021   Scientific Data
doi:10.1038/s41597-021-01009-3  pmcid:PMC8397735  pmid:34453060 

via crossref
Northeast Siberian permafrost ice‐wedge stable isotopes depict pronounced Last Glacial Maximum winter cooling
S. Wetterich, H. Meyer, M. Fritz, G. Mollenhauer, J. Rethemeyer, A. Kizyakov, L. Schirrmeister, T. Opel
2021   Geophysical Research Letters
doi:10.1029/2020gl092087 
web.archive.org [PDF]

via crossref
Reduced-complexity model for the impact of anthropogenic CO<sub>2</sub> emissions on future glacial cycles
Stefanie Talento, Andrey Ganopolski
2021   Earth System Dynamics
doi:10.5194/esd-12-1275-2021 
web.archive.org [PDF]

via crossref
Analysis of the subsea permafrost dynamics at the Arctic shelf accounting for climate change uncertainty during glacial cycles
Valentina V. Malakhova, Alexey Eliseev, Gennadii G. Matvienko, Oleg A. Romanovskii
2020   26th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics  unpublished
doi:10.1117/12.2575081 

via crossref
Hemisphere differences in response of sea surface temperature and sea ice to precession and obliquity
Zhipeng Wu, Qiuzhen Yin, Zhengtang Guo, André Berger
2020   Global and Planetary Change
doi:10.1016/j.gloplacha.2020.103223 

via crossref
Simulating Marine Isotope Stage 7 with a coupled climate–ice sheet model
Dipayan Choudhury, Axel Timmermann, Fabian Schloesser, Malte Heinemann, David Pollard
2020   Climate of the Past
doi:10.5194/cp-16-2183-2020 
web.archive.org [PDF]

via grobid
Interglacials of the last 800,000 years [article]
B. Berger, M. Crucifix, D.A. Hodell, C. Mangili, J.F. McManus, B. Otto-Bliesner, K. Pol, D. Raynaud (+ more)
2020  
doi:10.34657/3807 
web.archive.org [PDF]

via crossref
Carbon 13 isotopes reveal limited ocean circulation changes between interglacials of the last 800 ka
N. Bouttes, N. Vazquez Riveiros, A. Govin, D. Swingedouw, M.F. Sanchez-Goni, X. Crosta, D.M. Roche
2020   Paleoceanography and Paleoclimatology
doi:10.1029/2019pa003776 
web.archive.org [PDF]

via grobid
A new bias-correction method for precipitation over complex terrain suitable for different climate states: a case study using WRF (version 3.8.1)
Patricio Velasquez, Martina Messmer, Christoph C. Raible
2020  
doi:10.48350/152604 
web.archive.org [PDF]

via crossref
The "missing glaciations" of the Middle Pleistocene
Philip D. Hughes, Philip L. Gibbard, Jürgen Ehlers
2020   Quaternary Research
doi:10.1017/qua.2019.76 

via crossref
Uncertainty in temperature and sea level datasets for the Pleistocene glacial cycles: Implications for thermal state of the subsea sediments
Valentina V. Malakhova, Alexey V. Eliseev
2020   Global and Planetary Change
doi:10.1016/j.gloplacha.2020.103249 

via crossref
Ice Sheets in the [chapter]
Bas de Boer, Roderik van de Wal
2020   Fission-Track Thermochronology and its Application to Geology
doi:10.1007/978-3-030-42584-5_16 

via grobid
Modeling the Greenland englacial stratigraphy [post]
Andreas Born, Alexander Robinson
2020    unpublished
doi:10.5194/tc-2020-355 
web.archive.org [PDF]

via crossref
A new bias-correction method for precipitation over complex terrain suitable for different climate states: a case study using WRF (version 3.8.1)
Patricio Velasquez, Martina Messmer, Christoph C. Raible
2020   Geoscientific Model Development
doi:10.5194/gmd-13-5007-2020 
web.archive.org [PDF]

via crossref
Nonlinear response of the Antarctic Ice Sheet to late Quaternary sea level and climate forcing
Michelle Tigchelaar, Axel Timmermann, Tobias Friedrich, Malte Heinemann, David Pollard
2019   The Cryosphere
doi:10.5194/tc-13-2615-2019 
web.archive.org [PDF]

via grobid
A comprehensive history of climate and habitat stability of the last 800&thinsp,000 years
Mario Krapp, Robert Beyer, Stephen L. Edmundson, Paul J. Valdes, Andrea Manica
2019   Climate of the Past Discussions
doi:10.5194/cp-2019-91 
web.archive.org [PDF]

via crossref
Using Late Pleistocene sea surface temperature reconstructions to constrain future greenhouse warming
Tobias Friedrich, Axel Timmermann
2019   Earth and Planetary Science Letters
doi:10.1016/j.epsl.2019.115911 
Showing 1 - 30 of 149 references  next »