MDCT: Multi-Kernel Dilated Convolution and Transformer for One-Stage Object Detection of Remote Sensing Images release_rjln27yk3fgwtg2fnw5auk5ynm

by Juanjuan Chen, Hansheng Hong, Bin Song, Jie Guo, Chen Chen, Junjie Xu

Published in Remote Sensing by MDPI AG.

2023   Volume 15, p371

Abstract

Deepearning (DL)-based object detection algorithms have gained impressive achievements in natural images and have gradually matured in recent years. However, compared with natural images, remote sensing images are faced with severe challenges due to the complex backgrounds and difficult detection of small objects in dense scenes. To address these problems, a novel one-stage object detection model named MDCT is proposed based on a multi-kernel dilated convolution (MDC) block and transformer block. Firstly, a new feature enhancement module, MDC block, is developed in the one-stage object detection model to enhance small objects' ontology and adjacent spatial features. Secondly, we integrate a transformer block into the neck network of the one-stage object detection model in order to prevent theoss of object information in complex backgrounds and dense scenes. Finally, a depthwise separable convolution is introduced to each MDC block to reduce the computational cost. We conduct experiments on three datasets: DIOR, DOTA, and NWPU VHR-10. Compared with the YOLOv5, our model improves the object detection accuracy by 2.3%, 0.9%, and 2.9% on the DIOR, DOTA, and NWPU VHR-10 datasets, respectively.
In application/xml+jats format

Archived Content

There are no accessible files associated with this release. You could check other releases for this work for an accessible version.

Not Preserved
Save Paper Now!

Know of a fulltext copy of on the public web? Submit a URL and we will archive it

Type  article-journal
Stage   published
Date   2023-01-07
Language   en ?
Container Metadata
Open Access Publication
In DOAJ
In ISSN ROAD
In Keepers Registry
ISSN-L:  2072-4292
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: 6739e9e0-bdb8-4ad8-b0ea-8c9fad3f4961
API URL: JSON