Charge-Density-Wave Formation in the Doped Two-Leg Extended Hubbard
Ladder
release_rhp4el3ugzgtrhbaujauaxyaoa
by
M. Tsuchiizu,
Y. Suzumura
2003
Abstract
We investigate electronic properties of the doped two-leg Hubbard ladder with
both the onsite and the nearest-neighbor Coulomb repulsions, by using the the
weak-coupling renormalization-group method. It is shown that, for strong
nearest-neighbor repulsions, the charge-density-wave state coexisting with the
p-density-wave state becomes dominant fluctuation where spins form intrachain
singlets. By increasing doping rate, we have also shown that the effects of the
nearest-neighbor repulsions are reduced and the system exhibits a quantum phase
transition into the d-wave-like (or rung-singlet) superconducting state. We
derive the effective fermion theory which describes the critical properties of
the transition point with the gapless excitation of magnon. The phase diagram
of the two-leg ladder compound, Sr_14-xCa_xCu_24O_41, is discussed.
In text/plain
format
Archived Content
There are no accessible files associated with this release. You could check other releases for this work for an accessible version.
Know of a fulltext copy of on the public web? Submit a URL and we will archive it
cond-mat/0311534v1
access all versions, variants, and formats of this works (eg, pre-prints)