Understanding the Metabolic Fate and Bioactivity of Dietary Anthocyanins release_rev_1628f23e-018f-4e23-8cca-b3fe2cfdfa92

by Netzel, Wright, Sultanbawa, Netzel

Published in Proceedings (MDPI) by MDPI AG.

2020   Volume 36, p64

Abstract

Anthocyanins are plant pigments and dietary phytochemicals, and may have potential health benefits. There is emerging evidence from epidemiological and experimental studies that suggests a higher consumption of anthocyanin-rich foods is associated with a reduced risk of heart disease and diabetes. To better understand the observed beneficial effects of anthocyanins and their underlying mode of action, bioavailability and metabolic fate needs to be studied in more detail. Healthy human subjects (10–12 in two different studies) received red grape pomace (700 mg anthocyanins/mainly as malvidin-3-glucoside) or Queen Garnet plum (QGP) juice (426 mg anthocyanins/mainly as cyanidin-3-glucoside) and an anthocyanin-free control in a randomised crossover design. Malvidin- and cyanidin-glycosides are common in many fruits and beverages such as red grapes, red grape juice, red wine, blueberry, cherry, elderberry, (Japanese) plum and are therefore of dietary significance. 24-hr urine samples were collected and analysed for anthocyanins and metabolites by UHPLC-PDA-MS. Methylated, glucuronidated and sulphated anthocyanins could be identified as characteristic metabolites in both studies. Furthermore, the increase in urinary hippuric acid (microbial/hepatic metabolite) was considerable in both studies after the consumption of red grape pomace or QGP juice (1.8–4.5-fold vs. control; p < 0.05). These findings suggest that structurally different anthocyanins are exposed to a similar extensive metabolism by enzymes and the gut microbiome and that the generated metabolites are most likely the bioactive compounds in vivo. Therefore, more human studies are warranted to investigate the metabolic fate of dietary anthocyanins and the bioactivity of generated metabolites.
In application/xml+jats format

Type  article-journal
Stage   published
Date   2020-01-19
Language   en ?
Proceedings Metadata
Open Access Publication
In DOAJ
In ISSN ROAD
In Keepers Registry
ISSN-L:  2504-3900
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Revision

This is a specific, static metadata record, not necessarily linked to any current entity in the catalog.

Catalog Record
Revision: 1628f23e-018f-4e23-8cca-b3fe2cfdfa92
API URL: JSON