Nonparametric Pointwise Estimation for a Regression Model with Multiplicative Noise
release_r235l47wn5en7ckuvqx3hqlrzq
by
Jia Chen,
junke kou
Abstract
In this paper, we consider a general nonparametric regression estimation model with the feature of having multiplicative noise. We propose a linear estimator and nonlinear estimator by wavelet method. The convergence rates of those regression estimators under pointwise error over Besov spaces are proved. It turns out that the obtained convergence rates are consistent with the optimal convergence rate of pointwise nonparametric functional estimation.
In application/xml+jats
format
Archived Files and Locations
application/pdf
559.1 kB
file_kuolgy33crebvm34e6zpjpx57m
|
downloads.hindawi.com (publisher) web.archive.org (webarchive) |
Read Archived PDF
Preserved and Accessible
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
access all versions, variants, and formats of this works (eg, pre-prints)
Cite This
Lookup Links
oaDOI/unpaywall (OA fulltext)
Crossref Metadata (via API)
Worldcat
SHERPA/RoMEO (journal policies)
wikidata.org
CORE.ac.uk
Semantic Scholar
Google Scholar
Crossref Metadata (via API)
Worldcat
SHERPA/RoMEO (journal policies)
wikidata.org
CORE.ac.uk
Semantic Scholar
Google Scholar