Simplified Paralinear Oxidation Analyses
release_qqfwlrtxdng7bpw4pcbv6o4mxi
by
James Smialek
2022
Abstract
<jats:title>Abstract</jats:title>
<jats:italic>Paralinear</jats:italic> oxidative behavior, i.e., concurrent <jats:italic>para</jats:italic>bolic <jats:italic>scale growth</jats:italic> (<jats:italic>k</jats:italic><jats:sub><jats:italic>p</jats:italic></jats:sub>) and <jats:italic>linear scale volatility</jats:italic> (<jats:italic>k</jats:italic><jats:sub><jats:italic>l</jats:italic></jats:sub> or <jats:italic>k</jats:italic><jats:sub><jats:italic>v</jats:italic></jats:sub>), was analyzed by an alternative to the Tedmon equation. A convenient <jats:italic>COSP for Windows</jats:italic> cyclic oxidation program analyzed published data for Cr, NiCr, Pb, SiC, Si<jats:sub>3</jats:sub>N<jats:sub>4</jats:sub>, and BN, all exhibiting scale volatility due to CrO<jats:sub>3</jats:sub>, CrO(OH)<jats:sub>2</jats:sub>, PbCl<jats:sub>2</jats:sub>, Si(OH)<jats:sub>4</jats:sub>, and HBO<jats:sub>2</jats:sub>. The 'cyclic' model used an iterative constant outer layer loss formalism, whereby a normalized spall constant, <jats:italic>Q</jats:italic><jats:sub>0</jats:sub> /<jats:italic>Δt</jats:italic>, defines the scale volatility rate, <jats:italic>k</jats:italic><jats:sub><jats:italic>l</jats:italic></jats:sub> (or <jats:italic>k</jats:italic><jats:sub><jats:italic>v</jats:italic></jats:sub>). Optimized trial inputs (fitting maximum mass gain (<jats:italic>ΔW</jats:italic><jats:sub><jats:italic>max</jats:italic></jats:sub>, <jats:italic>t</jats:italic><jats:sub><jats:italic>max</jats:italic></jats:sub>) and time to cross zero) generated accurate <jats:italic>k</jats:italic><jats:sub><jats:italic>p</jats:italic></jats:sub> and <jats:italic>k</jats:italic><jats:sub><jats:italic>l</jats:italic></jats:sub> and replicated ideal paralinear form. Initial approximations for <jats:italic>k</jats:italic><jats:sub><jats:italic>p</jats:italic></jats:sub> and <jats:italic>k</jats:italic><jats:sub><jats:italic>l</jats:italic></jats:sub> can now be obtained directly as ~ 4.1 (<jats:italic>ΔW</jats:italic><jats:sub><jats:italic>max</jats:italic></jats:sub><jats:sup><jats:italic>2</jats:italic></jats:sup><jats:italic>/ t</jats:italic><jats:sub><jats:italic>max</jats:italic></jats:sub>) and ~ 1.2 (<jats:italic>ΔW</jats:italic><jats:sub><jats:italic>max</jats:italic></jats:sub> <jats:italic>/ t</jats:italic><jats:sub><jats:italic>max</jats:italic></jats:sub>), respectively. However, high or low <jats:italic>k</jats:italic><jats:sub><jats:italic>l</jats:italic></jats:sub> extremes, (e.g., burner rig tests of SiC and Ti<jats:sub>2</jats:sub>AlC), may elude classic paralinear behavior. Inconsistencies between Tedmon's stated model parameters and actual data are also discussed.
In application/xml+jats
format
Archived Files and Locations
application/pdf
883.2 kB
file_qjdnkjxnsrdsle4uqmz4pqwghi
|
assets.researchsquare.com (publisher) web.archive.org (webarchive) |
post
Stage
unknown
Date 2022-08-09
access all versions, variants, and formats of this works (eg, pre-prints)
Crossref Metadata (via API)
Worldcat
wikidata.org
CORE.ac.uk
Semantic Scholar
Google Scholar