Simplified Paralinear Oxidation Analyses release_qqfwlrtxdng7bpw4pcbv6o4mxi

by James Smialek

Released as a post by Research Square Platform LLC.

2022  

Abstract

<jats:title>Abstract</jats:title> <jats:italic>Paralinear</jats:italic> oxidative behavior, i.e., concurrent <jats:italic>para</jats:italic>bolic <jats:italic>scale growth</jats:italic> (<jats:italic>k</jats:italic><jats:sub><jats:italic>p</jats:italic></jats:sub>) and <jats:italic>linear scale volatility</jats:italic> (<jats:italic>k</jats:italic><jats:sub><jats:italic>l</jats:italic></jats:sub> or <jats:italic>k</jats:italic><jats:sub><jats:italic>v</jats:italic></jats:sub>), was analyzed by an alternative to the Tedmon equation. A convenient <jats:italic>COSP for Windows</jats:italic> cyclic oxidation program analyzed published data for Cr, NiCr, Pb, SiC, Si<jats:sub>3</jats:sub>N<jats:sub>4</jats:sub>, and BN, all exhibiting scale volatility due to CrO<jats:sub>3</jats:sub>, CrO(OH)<jats:sub>2</jats:sub>, PbCl<jats:sub>2</jats:sub>, Si(OH)<jats:sub>4</jats:sub>, and HBO<jats:sub>2</jats:sub>. The 'cyclic' model used an iterative constant outer layer loss formalism, whereby a normalized spall constant, <jats:italic>Q</jats:italic><jats:sub>0</jats:sub> /<jats:italic>Δt</jats:italic>, defines the scale volatility rate, <jats:italic>k</jats:italic><jats:sub><jats:italic>l</jats:italic></jats:sub> (or <jats:italic>k</jats:italic><jats:sub><jats:italic>v</jats:italic></jats:sub>). Optimized trial inputs (fitting maximum mass gain (<jats:italic>ΔW</jats:italic><jats:sub><jats:italic>max</jats:italic></jats:sub>, <jats:italic>t</jats:italic><jats:sub><jats:italic>max</jats:italic></jats:sub>) and time to cross zero) generated accurate <jats:italic>k</jats:italic><jats:sub><jats:italic>p</jats:italic></jats:sub> and <jats:italic>k</jats:italic><jats:sub><jats:italic>l</jats:italic></jats:sub> and replicated ideal paralinear form. Initial approximations for <jats:italic>k</jats:italic><jats:sub><jats:italic>p</jats:italic></jats:sub> and <jats:italic>k</jats:italic><jats:sub><jats:italic>l</jats:italic></jats:sub> can now be obtained directly as ~ 4.1 (<jats:italic>ΔW</jats:italic><jats:sub><jats:italic>max</jats:italic></jats:sub><jats:sup><jats:italic>2</jats:italic></jats:sup><jats:italic>/ t</jats:italic><jats:sub><jats:italic>max</jats:italic></jats:sub>) and ~ 1.2 (<jats:italic>ΔW</jats:italic><jats:sub><jats:italic>max</jats:italic></jats:sub> <jats:italic>/ t</jats:italic><jats:sub><jats:italic>max</jats:italic></jats:sub>), respectively. However, high or low <jats:italic>k</jats:italic><jats:sub><jats:italic>l</jats:italic></jats:sub> extremes, (e.g., burner rig tests of SiC and Ti<jats:sub>2</jats:sub>AlC), may elude classic paralinear behavior. Inconsistencies between Tedmon's stated model parameters and actual data are also discussed.
In application/xml+jats format

Archived Files and Locations

application/pdf   883.2 kB
file_qjdnkjxnsrdsle4uqmz4pqwghi
assets.researchsquare.com (publisher)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  post
Stage   unknown
Date   2022-08-09
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: 8144294c-b1e9-4ac8-a8ee-4e7db0378b49
API URL: JSON