A Data-Driven Parameter Adaptive Clustering Algorithm Based on Density Peak release_pnhy3q7m5bbefilnl5rcfb2prq

by Tao Du, Shouning Qu, Qin Wang

Published in Complexity by Hindawi Limited.

2018   Volume 2018, p1-14

Abstract

Clustering is an important unsupervised machine learning method which can efficiently partition points without training data set. However, most of the existing clustering algorithms need to set parameters artificially, and the results of clustering are much influenced by these parameters, so optimizing clustering parameters is a key factor of improving clustering performance. In this paper, we propose a parameter adaptive clustering algorithm DDPA-DP which is based on density-peak algorithm. In DDPA-DP, all parameters can be adaptively adjusted based on the data-driven thought, and then the accuracy of clustering is highly improved, and the time complexity is not increased obviously. To prove the performance of DDPA-DP, a series of experiments are designed with some artificial data sets and a real application data set, and the clustering results of DDPA-DP are compared with some typical algorithms by these experiments. Based on these results, the accuracy of DDPA-DP has obvious advantage of all, and its time complexity is close to classical DP-Clust.
In application/xml+jats format

Archived Files and Locations

application/pdf   3.6 MB
file_d4li7rzo5je67nxmwnc22oc2me
downloads.hindawi.com (publisher)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  article-journal
Stage   published
Date   2018-10-21
Language   en ?
Container Metadata
Open Access Publication
In DOAJ
In Keepers Registry
ISSN-L:  1076-2787
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: 978b8d5d-7b94-4145-b9e7-1c366c980d73
API URL: JSON