CoGAPS 3: Bayesian non-negative matrix factorization for single-cell analysis with asynchronous updates and sparse data structures
release_p7jtbsh4zfdwfj3kqs5bj4gbv4
by
Thomas D. Sherman,
Tiger Gao,
Elana J Fertig
2020
Abstract
Abstract Background Bayesian factorization methods, including Coordinated Gene Activity in Pattern Sets (CoGAPS), are emerging as powerful analysis tools for single cell data. However, these methods have greater computational costs than their gradient-based counterparts. These costs are often prohibitive for analysis of large single-cell datasets. Many such methods can be run in parallel which enables this limitation to be overcome by running on more powerful hardware. However, the constraints imposed by the prior distributions in CoGAPS limit the applicability of parallelization methods to enhance computational efficiency for single-cell analysis. Results We developed a new software framework for parallel matrix factorization in Version 3 of the CoGAPS R/Bioconductor package to overcome the computational limitations of Bayesian matrix factorization for single cell data analysis. This parallelization framework provides asynchronous updates for sequential updating steps of the algorithm to enhance computational efficiency. These algorithmic advances were coupled with new software architecture and sparse data structures to reduce the memory overhead for single-cell data. Conclusions Altogether our new software enhance the efficiency of the CoGAPS Bayesian matrix factorization algorithm so that it can analyze 1000 times more cells, enabling factorization of large single-cell data sets.
In text/plain
format
Archived Content
There are no accessible files associated with this release. You could check other releases for this work for an accessible version.
Know of a fulltext copy of on the public web? Submit a URL and we will archive it
stub
Stage
published
Date 2020-10-15
access all versions, variants, and formats of this works (eg, pre-prints)
Datacite Metadata (via API)
Worldcat
wikidata.org
CORE.ac.uk
Semantic Scholar
Google Scholar