A Comparative Analysis of Bias Amplification in Graph Neural Network Approaches for Recommender Systems release_oo4updyerbgcbbr47ngwgepnum

by Nikzad Chizari, Niloufar Shoeibi, María Moreno García

Published in Electronics by MDPI AG.

2022   Volume 11, Issue 20, p3301

Abstract

Recommender Systems (RSs) are used to provide users with personalized item recommendations and help them overcome the problem of information overload. Currently, recommendation methods based on deep learning are gaining ground over traditional methods such as matrix factorization due to their ability to represent the complex relationships between users and items and to incorporate additional information. The fact that these data have a graph structure and the greater capability of Graph Neural Networks (GNNs) to learn from these structures has led to their successful incorporation into recommender systems. However, the bias amplification issue needs to be investigated while using these algorithms. Bias results in unfair decisions, which can negatively affect the company's reputation and financial status due to societal disappointment and environmental harm. In this paper, we aim to comprehensively study this problem through a literature review and an analysis of the behavior against biases of different GNN-based algorithms compared to state-of-the-art methods. We also intend to explore appropriate solutions to tackle this issue with the least possible impact on the model's performance.
In application/xml+jats format

Archived Content

There are no accessible files associated with this release. You could check other releases for this work for an accessible version.

"Dark" Preservation Only
Save Paper Now!

Know of a fulltext copy of on the public web? Submit a URL and we will archive it

Type  article-journal
Stage   published
Date   2022-10-13
Language   en ?
Container Metadata
Open Access Publication
In DOAJ
In ISSN ROAD
In Keepers Registry
ISSN-L:  2079-9292
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: acd19078-403a-426a-a6c1-886decb59db5
API URL: JSON