A Comparative Analysis of Bias Amplification in Graph Neural Network Approaches for Recommender Systems
release_oo4updyerbgcbbr47ngwgepnum
by
Nikzad Chizari,
Niloufar Shoeibi,
María Moreno García
Abstract
Recommender Systems (RSs) are used to provide users with personalized item recommendations and help them overcome the problem of information overload. Currently, recommendation methods based on deep learning are gaining ground over traditional methods such as matrix factorization due to their ability to represent the complex relationships between users and items and to incorporate additional information. The fact that these data have a graph structure and the greater capability of Graph Neural Networks (GNNs) to learn from these structures has led to their successful incorporation into recommender systems. However, the bias amplification issue needs to be investigated while using these algorithms. Bias results in unfair decisions, which can negatively affect the company's reputation and financial status due to societal disappointment and environmental harm. In this paper, we aim to comprehensively study this problem through a literature review and an analysis of the behavior against biases of different GNN-based algorithms compared to state-of-the-art methods. We also intend to explore appropriate solutions to tackle this issue with the least possible impact on the model's performance.
In application/xml+jats
format
Archived Content
There are no accessible files associated with this release. You could check other releases for this work for an accessible version.
Know of a fulltext copy of on the public web? Submit a URL and we will archive it
Open Access Publication
In DOAJ
In ISSN ROAD
In Keepers Registry
ISSN-L:
2079-9292
access all versions, variants, and formats of this works (eg, pre-prints)
Crossref Metadata (via API)
Worldcat
SHERPA/RoMEO (journal policies)
wikidata.org
CORE.ac.uk
Semantic Scholar
Google Scholar