The diameter of the Birkhoff polytope release_oaor5y77zjalnj5p5b5kzzpssa

by Ludovick Bouthat, Javad Mashreghi, Frédéric Morneau-Guérin

Published in Special Matrices by Walter de Gruyter GmbH.

2024   Volume 12, Issue 1

Abstract

<jats:title>Abstract</jats:title> The geometry of the compact convex set of all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2023-0113_eq_001.png" /> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>n</m:mi> <m:mo>×</m:mo> <m:mi>n</m:mi> </m:math> <jats:tex-math>n\times n</jats:tex-math> </jats:alternatives> </jats:inline-formula> doubly stochastic matrices, a structure frequently referred to as the Birkhoff polytope, has been an active subject of research as of late. Geometric characteristics such as the Chebyshev center and the Chebyshev radius with respect to the operator norms from <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2023-0113_eq_002.png" /> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msubsup> <m:mrow> <m:mi>ℓ</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> <m:mrow> <m:mi>p</m:mi> </m:mrow> </m:msubsup> </m:math> <jats:tex-math>{\ell }_{n}^{p}</jats:tex-math> </jats:alternatives> </jats:inline-formula> to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2023-0113_eq_003.png" /> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msubsup> <m:mrow> <m:mi>ℓ</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> <m:mrow> <m:mi>p</m:mi> </m:mrow> </m:msubsup> </m:math> <jats:tex-math>{\ell }_{n}^{p}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and the Schatten <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2023-0113_eq_004.png" /> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>p</m:mi> </m:math> <jats:tex-math>p</jats:tex-math> </jats:alternatives> </jats:inline-formula>-norms, both for the range <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2023-0113_eq_005.png" /> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:mi>p</m:mi> <m:mo>≤</m:mo> <m:mi>∞</m:mi> </m:math> <jats:tex-math>1\le p\le \infty </jats:tex-math> </jats:alternatives> </jats:inline-formula>, have only recently been studied in depth. In this article, we continue in this vein by determining the diameter of the Birkhoff polytope with respect to the metrics induced by the aforementioned matrix norms.
In application/xml+jats format

Archived Files and Locations

application/pdf   3.6 MB
file_igs3ydzn6varnnl6cdsqidioly
www.degruyter.com (publisher)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  article-journal
Stage   published
Date   2024-01-01
Language   en ?
Container Metadata
Open Access Publication
In DOAJ
In ISSN ROAD
In Keepers Registry
ISSN-L:  2300-7451
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: 14ae5d80-441b-4451-b758-7469727b0d78
API URL: JSON