Delta networks for optimized recurrent network computation release_mpnbu6o44ndfpa4g7cavughxui

by D Neil, J-H Lee, T Delbruck, S-C Liu

References

NOTE: currently batch computed and may include additional references sources, or be missing recent changes, compared to entity reference list.
Fuzzy reference matching is a work in progress!
Read more about quality, completeness, and caveats in the fatcat guide.
Showing 1 - 30 of 32 references (in 80ms)
[b0]

via grobid
Deep Speech 2: End-to-End Speech Recognition in English and Mandarin [article]
Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Jingdong Chen, Mike Chrzanowski (+ more)
2015    pre-print
version:v1  arXiv:1512.02595v1 
web.archive.org [PDF]
[b1]

via grobid
Bergstra, James, Breuleux, Olivier, Bastien, Frédéric, Lamblin, Pascal, Pascanu, Razvan, Desjardins, Guil- laume, Turian, Joseph, Warde-Farley, David, and Ben- gio, Yoshua. Theano: a CPU and GPU math expres- sion compiler. In Proceedings of the Python for scientific computing conference (SciPy), volume 4, pp. 3, 2010.
[b2]

via grobid
End to End Learning for Self-Driving Cars [article]
Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort (+ more)
2016    pre-print
version:v1  arXiv:1604.07316v1 
web.archive.org [PDF]
[b3]

via grobid
A Curriculum Learning Method for Improved Noise Robustness in Automatic Speech Recognition [article]
Stefan Braun, Daniel Neil, Shih-Chii Liu
2016    pre-print
version:v1  arXiv:1606.06864v1 
web.archive.org [PDF]
[b4]

via fuzzy
Return of the Devil in the Details: Delving Deep into Convolutional Nets
Ken Chatfield, Karen Simonyan, Andrea Vedaldi, Andrew Zisserman
2014   Proceedings of the British Machine Vision Conference 2014  unpublished
doi:10.5244/c.28.6 
web.archive.org [PDF]
[b5]

via grobid
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation [article]
Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, Yoshua Bengio
2014    pre-print
version:v1  arXiv:1406.1078v1 
web.archive.org [PDF]
[b6]

via grobid
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling [article]
Junyoung Chung and Caglar Gulcehre and KyungHyun Cho and Yoshua Bengio
2014    pre-print
version:v1  arXiv:1412.3555v1 
web.archive.org [PDF]
[b7]

via grobid
Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1 [article]
Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv and Yoshua Bengio
2016    pre-print
version:v1  arXiv:1602.02830v1 
web.archive.org [PDF]
[b8]

via grobid
Training deep neural networks with low precision multiplications [article]
Matthieu Courbariaux, Yoshua Bengio, Jean-Pierre David
2014    pre-print
version:v1  arXiv:1412.7024v1 
web.archive.org [PDF]
[b9]

via fuzzy
BinaryConnect: Training Deep Neural Networks with binary weights during propagations [article]
Matthieu Courbariaux, Yoshua Bengio, Jean-Pierre David
2015    pre-print
version:v1  arXiv:1511.00363v1 
web.archive.org [PDF]
[b10]

via grobid
Lasagne: First Release. [article]
Sander Dieleman, Jan Schlüter, Colin Raffel, Eben Olson, Søren Kaae Sønderby, Daniel Nouri, Daniel Maturana, Martin Thoma (+ more)
2015  
doi:10.5281/zenodo.27878 
[b11]

via grobid
Convolutional Networks for Fast, Energy-Efficient Neuromorphic Computing [article]
Steven K. Esser, Paul A. Merolla, John V. Arthur, Andrew S. Cassidy, Rathinakumar Appuswamy, Alexander Andreopoulos, David J. Berg, Jeffrey L. McKinstry, Timothy Melano (+ more)
2016    pre-print
version:v1  arXiv:1603.08270v1 
web.archive.org [PDF]
[b12]

via grobid
Graves, Alan, Mohamed, Abdel-rahman, and Hinton, Ge- offrey. Speech recognition with deep recurrent neural networks. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, pp. 6645-6649. IEEE, 2013.
[b13]

via grobid
Han, Song, Mao, Huizi, and Dally, William J. Deep com- pression: Compressing deep neural network with prun- ing, trained quantization and huffman coding. CoRR, abs/1510.00149, 2, 2015.
[b14]

via grobid
Han, Song, Kang, Junlong, Mao, Huizi, Hu, Yiming, Li, Xin, Li, Yubin, Xie, Dongliang, Luo, Hong, Yao, Song, Wang, Yu, et al. Ese: Efficient speech recognition engine with compressed lstm on fpga. In FPGA 2017; NIPS 2016 EMDNN workshop, 2016.
[b15]

via grobid
Hempel, Martin. Deep learning for piloted driving. In NVIDIA GPU Tech Conference, 2016.
[b16]

via grobid
Hochreiter, Sepp and Schmidhuber, Jürgen. Long short- term memory. Neural computation, 9(8):1735-1780, 1997.
[b17]

via grobid
Horowitz, M. 1.1 Computing's energy problem (and what we can do about it). In 2014 IEEE International Solid- State Circuits Conference Digest of Technical Papers (ISSCC), pp. 10-14, February 2014. doi: 10.1109/ ISSCC.2014.6757323.
[b18]

via grobid
Deep Networks with Stochastic Depth [article]
Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, Kilian Weinberger
2016    pre-print
version:v1  arXiv:1603.09382v1 
web.archive.org [PDF]
[b19]

via grobid
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size [article]
Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer
2016    pre-print
version:v1  arXiv:1602.07360v1 
web.archive.org [PDF]
[b20]

via grobid
A recurrent neural network without chaos [article]
Thomas Laurent, James von Brecht
2016    pre-print
version:v1  arXiv:1612.06212v1 
web.archive.org [PDF]
[b21]

via grobid
Leonard, R Gary and Doddington, George. Tidigits speech corpus. Texas Instruments, Inc, 1993.
[b22]

via grobid
Mikolov, Tomas, Karafiát, Martin, Burget, Lukas, Cer- nockỳ, Jan, and Khudanpur, Sanjeev. Recurrent neu- ral network based language model. In Interspeech, vol- ume 2, pp. 3, 2010.
[b23]

via fuzzy
Effective sensor fusion with event-based sensors and deep network architectures
Daniel Neil, Shih-Chii Liu
2016  
doi:10.5167/uzh-132663 
[b24]

via grobid
Sigma Delta Quantized Networks [article]
Peter O'Connor, Max Welling
2016    pre-print
version:v1  arXiv:1611.02024v1 
web.archive.org [PDF]
[b25]

via grobid
Recurrent Neural Networks With Limited Numerical Precision [article]
Joachim Ott, Zhouhan Lin, Ying Zhang, Shih-Chii Liu, Yoshua Bengio
2016    pre-print
version:v1  arXiv:1608.06902v1 
web.archive.org [PDF]
[b26]

via grobid
XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks [article]
Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, Ali Farhadi
2016    pre-print
version:v1  arXiv:1603.05279v1 
web.archive.org [PDF]
[b27]

via grobid
Learning a Driving Simulator [article]
Eder Santana, George Hotz
2016    pre-print
version:v1  arXiv:1608.01230v1 
web.archive.org [PDF]
[b28]

via fuzzy
Robustness of spiking deep belief networks to noise and reduced bit precision of neuro-inspired hardware platforms
E Stromatias, D Neil, M Pfeiffer, F Galluppi, S Furber, S-C Liu
2015  
doi:10.5167/uzh-121784 
[b29]

via fuzzy
Going deeper with convolutions
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke (+ more)
2015   Computer Vision and Pattern Recognition
doi:10.1109/cvpr.2015.7298594  dblp:conf/cvpr/SzegedyLJSRAEVR15 
web.archive.org [PDF]
Showing 1 - 30 of 32 references  next »