A Multivariate Modeling Approach for Generating Ensemble Climatology Forcing for Hydrologic Applications release_miobtrmud5e7dmouzffzdhdrhe

by Sepideh Khajehei

References

NOTE: currently batch computed and may include additional references sources, or be missing recent changes, compared to entity reference list.
Fuzzy reference matching is a work in progress!
Read more about quality, completeness, and caveats in the fatcat guide.
Showing 1 - 30 of 57 references (in 55ms)
[b0]

via grobid
Aho, K., D. Derryberry, and T. Peterson, 2014, Model selection for ecologists: the worldviews of AIC and BIC: Ecology, v. 95, p. 631-636.
[b1]

via grobid
Anderson, J. L., 2001, An ensemble adjustment Kalman filter for data assimilation: Monthly weather review, v. 129, p. 2884-2903.
[b2]

via grobid
Anderson, T. W., 1962, On the distribution of the two-sample Cramer-von Mises criterion: The Annals of Mathematical Statistics, p. 1148-1159.
[b3]

via fuzzy
Accuracy of radar rainfall estimates for streamflow simulation
Marco Borga
2002   Journal of Hydrology
doi:10.1016/s0022-1694(02)00137-3 
[b4]

via grobid
Brown, J. D., and D. J. Seo, 2013, Evaluation of a nonparametric post-processor for bias correction and uncertainty estimation of hydrologic predictions: Hydrological Processes, v. 27, p. 83-105.
[b5]

via grobid
Bárdossy, A., 2006, Copula-based geostatistical models for groundwater quality parameters: Water Resources Research, v. 42.
[b6]

via grobid
Cherubini, U., E. Luciano, and W. Vecchiato, 2004, Copula methods in finance, John Wiley & Sons.
[b7]

via fuzzy
The Schaake Shuffle: A Method for Reconstructing Space–Time Variability in Forecasted Precipitation and Temperature Fields
Martyn Clark, Subhrendu Gangopadhyay, Lauren Hay, Balaji Rajagopalan, Robert Wilby
2004   Journal of Hydrometeorology
doi:10.1175/1525-7541(2004)005<0243:tssamf>2.0.co;2 
web.archive.org [PDF]
[b8]

via fuzzy
Use of Medium-Range Numerical Weather Prediction Model Output to Produce Forecasts of Streamflow
Martyn P. Clark, Lauren E. Hay
2004   Journal of Hydrometeorology
doi:10.1175/1525-7541(2004)005<0015:uomnwp>2.0.co;2 
web.archive.org [PDF]
[b9]

via grobid
DeChant, C. M., and H. Moradkhani, 2011, Improving the characterization of initial condition for ensemble streamflow prediction using data assimilation: Hydrology and Earth System Sciences, v. 15, p. 3399-3410.
[b10]

via grobid
DeChant, C. M., and H. Moradkhani, 2014, Toward a reliable prediction of seasonal forecast uncertainty: Addressing model and initial condition uncertainty with ensemble data assimilation and Sequential Bayesian Combination: Journal of Hydrology, v. 519, Part D, p. 2967-2977.
[b11]

via grobid
On the assessment of reliability in probabilistic hydrometeorological event forecasting
Caleb M. DeChant, Hamid Moradkhani
2015   Water Resources Research
doi:10.1002/2014wr016617 
web.archive.org [PDF]
[b12]

via grobid
Demargne, J., J. Brown, Y. Liu, D. J. Seo, L. Wu, Z. Toth, and Y. Zhu, 2010, Diagnostic verification of hydrometeorological and hydrologic ensembles: Atmospheric Science Letters, v. 11, p. 114-122.
[b13]

via grobid
Favre, A. C., S. El Adlouni, L. Perreault, N. Thiémonge, and B. Bobée, 2004, Multivariate hydrological frequency analysis using copulas: Water resources research, v. 40.
[b14]

via grobid
Genest, C., B. Rémillard, and D. Beaudoin, 2009, Goodness-of-fit tests for copulas: A review and a power study: Insurance: Mathematics and economics, v. 44, p. 199- 213.
[b15]

via grobid
Gupta, H. V., H. Kling, K. K. Yilmaz, and G. F. Martinez, 2009, Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling: Journal of Hydrology, v. 377, p. 80-91.
[b16]

via grobid
Hamill, T. M., and J. S. Whitaker, 2006, Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory and application: Monthly Weather Review, v. 134, p. 3209-3229.
[b17]

via grobid
Hamill, T. M., J. S. Whitaker, and S. L. Mullen, 2006, Reforecasts: An Important Dataset for Improving Weather Predictions: Bulletin of the American Meteorological Society, v. 87, p. 33-46.
[b18]

via grobid
Hersbach, H., 2000, Decomposition of the Continuous Ranked Probability Score for Ensemble Prediction Systems: Weather and Forecasting, v. 15, p. 559-570.
[b19]

via grobid
Joe, H., 1997, Multivariate models and multivariate dependence concepts, v. 73, CRC Press.
[b20]

via grobid
Kelly, K. S., and R. Krzysztofowicz, 1997, A bivariate meta-Gaussian density for use in hydrology: Stochastic Hydrology and Hydraulics, v. 11, p. 17-31.
[b21]

via fuzzy
Hydrologic uncertainty processor for probabilistic river stage forecasting: precipitation-dependent model
Roman Krzysztofowicz, Henry D Herr
2001   Journal of Hydrology
doi:10.1016/s0022-1694(01)00412-7 
[b22]

via grobid
Li, H., J. Sheffield, and E. F. Wood, 2010, Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching: Journal of Geophysical Research: Atmospheres (1984-2012), v. 115.
[b23]

via grobid
Liu, Y., Q. Duan, L. Zhao, A. Ye, Y. Tao, C. Miao, X. Mu, and J. C. Schaake, 2013, Evaluating the predictive skill of post-processed NCEP GFS ensemble precipitation forecasts in China's Huai river basin: Hydrological Processes, v. 27, p. 57-74.
[b24]

via grobid
Improved Bayesian multimodeling: Integration of copulas and Bayesian model averaging
Shahrbanou Madadgar, Hamid Moradkhani
2014   Water Resources Research
doi:10.1002/2014wr015965 
web.archive.org [PDF]
[b25]

via grobid
Madadgar, S., H. Moradkhani, and D. Garen, 2014, Towards improved post-processing of hydrologic forecast ensembles: Hydrological Processes, v. 28, p. 104-122.
[b26]

via grobid
Drought Analysis under Climate Change Using Copula
Shahrbanou Madadgar, Hamid Moradkhani
2013   Journal of hydrologic engineering
doi:10.1061/(asce)he.1943-5584.0000532 
web.archive.org [PDF]
[b27]

via grobid
A Bayesian Framework for Probabilistic Seasonal Drought Forecasting
Shahrbanou Madadgar, Hamid Moradkhani
2013   Journal of Hydrometeorology
doi:10.1175/jhm-d-13-010.1 
[b28]

via grobid
Spatio-temporal drought forecasting within Bayesian networks
Shahrbanou Madadgar, Hamid Moradkhani
2014   Journal of Hydrology
doi:10.1016/j.jhydrol.2014.02.039 
[b29]

via grobid
Evolution of ensemble data assimilation for uncertainty quantification using the particle filter-Markov chain Monte Carlo method
Hamid Moradkhani, Caleb M. DeChant, Soroosh Sorooshian
2012   Water Resources Research
doi:10.1029/2012wr012144 
web.archive.org [PDF]
Showing 1 - 30 of 57 references  next »