Model Predictive Controller Design for Vehicle Motion Control at Handling Limits in Multiple Equilibria on Varying Road Surfaces release_lmttaefeuffopnsuwi4uksm4ya

by Szilárd Czibere, Ádám Domina, Ádám Bárdos, Zsolt SZALAY

Published in Energies by MDPI AG.

2021   Volume 14, Issue 20, p6667

Abstract

Electronic vehicle dynamics systems are expected to evolve in the future as more and more automobile manufacturers mark fully automated vehicles as their main path of development. State-of-the-art electronic stability control programs aim to limit the vehicle motion within the stable region of the vehicle dynamics, thereby preventing drifting. On the contrary, in this paper, the authors suggest its use as an optimal cornering technique in emergency situations and on certain road conditions. Achieving the automated initiation and stabilization of vehicle drift motion (also known as powerslide) on varying road surfaces means a high level of controllability over the vehicle. This article proposes a novel approach to realize automated vehicle drifting in multiple operation points on different road surfaces. A three-state nonlinear vehicle and tire model was selected for control-oriented purposes. Model predictive control (MPC) was chosen with an online updating strategy to initiate and maintain the drift even in changing conditions. Parameter identification was conducted on a test vehicle. Equilibrium analysis was a key tool to identify steady-state drift states, and successive linearization was used as an updating strategy. The authors show that the proposed controller is capable of initiating and maintaining steady-state drifting. In the first test scenario, the reaching of a single drifting equilibrium point with −27.5° sideslip angle and 10 m/s longitudinal speed is presented, which resulted in −20° roadwheel angle. In the second demonstration, the setpoints were altered across three different operating points with sideslip angles ranging from −27.5° to −35°. In the third test case, a wet to dry road transition is presented with 0.8 and 0.95 road grip values, respectively.
In application/xml+jats format

Archived Files and Locations

application/pdf   5.7 MB
file_eztja65harhtdg3hfkxvbwd3ma
mdpi-res.com (publisher)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  article-journal
Stage   published
Date   2021-10-14
Language   en ?
Container Metadata
Open Access Publication
In DOAJ
In ISSN ROAD
In Keepers Registry
ISSN-L:  1996-1073
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: f586e5e7-89b5-43b1-8f22-997fcd48322e
API URL: JSON