Spectral theory of approximate lattices in nilpotent Lie groups
release_lalv5cpwxzapbec5njrcieua6u
by
Michael Bjorklund,
Tobias Hartnick
Abstract
<jats:title>Abstract</jats:title>We consider approximate lattices in nilpotent Lie groups. With every such approximate lattice one can associate a hull dynamical system and, to every invariant measure of this system, a corresponding unitary representation. Our results concern both the spectral theory of the representation and the topological dynamics of the system. On the spectral side we construct explicit eigenfunctions for a large collection of central characters using weighted periodization against a twisted fiber density function. We construct this density function by establishing a parametric version of the Bombieri–Taylor conjecture and apply our results to locate high-intensity Bragg peaks in the central diffraction of an approximate lattice. On the topological side we show that under some mild regularity conditions the hull of an approximate lattice admits a sequence of continuous horizontal factors, where the final horizontal factor is abelian and each intermediate factor corresponds to a central extension. We apply this to extend theorems of Meyer and Dani–Navada concerning number-theoretic properties of Meyer sets to the nilpotent setting.
In application/xml+jats
format
Archived Files and Locations
application/pdf
1.1 MB
file_zoaftaehyja5dhpfahlboxuhl4
|
research.chalmers.se (web) web.archive.org (webarchive) |
access all versions, variants, and formats of this works (eg, pre-prints)
Crossref Metadata (via API)
Worldcat
SHERPA/RoMEO (journal policies)
wikidata.org
CORE.ac.uk
Semantic Scholar
Google Scholar