Dual Pointer Network for Fast Extraction of Multiple Relations in a Sentence
release_kvujjebc5ngp3o4nu6665yeic4
by
Seongsik Park,
Harksoo Kim
Abstract
Relation extraction is a type of information extraction task that recognizes semantic relationships between entities in a sentence. Many previous studies have focused on extracting only one semantic relation between two entities in a single sentence. However, multiple entities in a sentence are associated through various relations. To address this issue, we proposed a relation extraction model based on a dual pointer network with a multi-head attention mechanism. The proposed model finds n-to-1 subject–object relations using a forward object decoder. Then, it finds 1-to-n subject–object relations using a backward subject decoder. Our experiments confirmed that the proposed model outperformed previous models, with an F1-score of 80.8% for the ACE (automatic content extraction) 2005 corpus and an F1-score of 78.3% for the NYT (New York Times) corpus.
In application/xml+jats
format
Archived Files and Locations
application/pdf
1.4 MB
file_3fjdxrt4orbvpnk6afgzltowim
|
res.mdpi.com (publisher) web.archive.org (webarchive) |
Open Access Publication
In DOAJ
In ISSN ROAD
In Keepers Registry
ISSN-L:
2076-3417
access all versions, variants, and formats of this works (eg, pre-prints)
Crossref Metadata (via API)
Worldcat
SHERPA/RoMEO (journal policies)
wikidata.org
CORE.ac.uk
Semantic Scholar
Google Scholar