Analisis Transaksi Konsumen Bidang Data Mining Menggunakan Algoritma Apriori Untuk Rekomendasi Bundling Produk Pada 212 Mart Kota Lhokseumawe
release_kr5s2gxewfctxeu6eai5peetci
by
Mutasar Mutasar,
Chaeroen Niesa
Abstract
212 Mart Lhokseumawe yang bernaung di bawah PT. Syirkah Mubarakah Lhokseumawe adalah sebuah usaha ritel yang baru saja dirintis. Dalam operasionalnya masih banyak kendala yang dihadapi sehingga omzet penjualan harian masih jauh dari yang diharapkan, namun peneliti ingin menawarkan sebuah solusi untuk meningkatkan penjualan produk dengan teknik Bundling Produk yang masih diterapkan secara konvensional. Tujuan dari penelitian ini adalah merancang dan membangun sebuah aplikasi data mining untuk memprediksi hasil penjualan barang yang diminati konsumen pada 212Mart Kota Lhokseumawe dengan menggunakan algoritma apriori berdasarkan data transaksi penjualan. Algoritma Apriori adalah salah suatu algoritma yang melakukan pencarian frequent itemset dengan menggunakan teknik association rule. Algoritma Apriori menggunakan pengetahuan frekuensi atribut yang telah diketahui sebelumnya untuk memproses informasi selanjutnya. Pada algoritma Apriori menentukan kandidat yang mungkin muncul dengan cara memperhatikan minimum support dan minimum confidence. Implementasi dari hasil pengolahan data transaksi penjualan diproses dengan algoritma apriori sehingga akan menghasilkan sebuah output penawaran Bundling Barang kepada konsumen dan menawarkan harga yang relative lebih ekonomis. Proses data mining ini melalui tahapan pengenalan pola perilaku dan transaksi konsumen pada 212 Mart Kota Lhokseumawe
In application/xml+jats
format
Archived Files and Locations
application/pdf
485.9 kB
file_fl7szcbuwvg2td2ojow4njcfkm
|
journal.umuslim.ac.id (publisher) web.archive.org (webarchive) |
article-journal
Stage
published
Date 2021-06-23
access all versions, variants, and formats of this works (eg, pre-prints)
Crossref Metadata (via API)
Worldcat
SHERPA/RoMEO (journal policies)
wikidata.org
CORE.ac.uk
Semantic Scholar
Google Scholar