Influence of stoichiometry on indentation-induced plasticity in CuZr glasses
release_iv6atr3prjgwbgrqlaikdhfim4
by
Karina E. Avila,
Stefan Küchemann,
Reinhardt E. Pinzón,
Herbert Urbassek
2021 Volume 127
Abstract
<jats:title>Abstract</jats:title>Plasticity in metallic glasses depends on their stoichiometry. We explore this dependence by molecular dynamics simulations for the case of CuZr alloys using the compositions Cu<jats:inline-formula><jats:alternatives><jats:tex-math>$$_{64.5}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mrow />
<mml:mrow>
<mml:mn>64.5</mml:mn>
</mml:mrow>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula>Zr<jats:inline-formula><jats:alternatives><jats:tex-math>$$_{35.5}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mrow />
<mml:mrow>
<mml:mn>35.5</mml:mn>
</mml:mrow>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula>, Cu<jats:inline-formula><jats:alternatives><jats:tex-math>$$_{50}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mrow />
<mml:mn>50</mml:mn>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula>Zr<jats:inline-formula><jats:alternatives><jats:tex-math>$$_{50}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mrow />
<mml:mn>50</mml:mn>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula>, and Cu<jats:inline-formula><jats:alternatives><jats:tex-math>$$_{35.5}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mrow />
<mml:mrow>
<mml:mn>35.5</mml:mn>
</mml:mrow>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula>Zr<jats:inline-formula><jats:alternatives><jats:tex-math>$$_{64.5}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mrow />
<mml:mrow>
<mml:mn>64.5</mml:mn>
</mml:mrow>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula>. Plasticity is induced by nanoindentation and orthogonal cutting. Only the Cu<jats:inline-formula><jats:alternatives><jats:tex-math>$$_{64.5}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mrow />
<mml:mrow>
<mml:mn>64.5</mml:mn>
</mml:mrow>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula>Zr<jats:inline-formula><jats:alternatives><jats:tex-math>$$_{35.5}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mrow />
<mml:mrow>
<mml:mn>35.5</mml:mn>
</mml:mrow>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula> sample shows the formation of localized strain in the form of shear bands, while plasticity is more homogeneous for the other samples. This feature concurs with the high fraction of full icosahedral short-range order found for Cu<jats:inline-formula><jats:alternatives><jats:tex-math>$$_{64.5}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mrow />
<mml:mrow>
<mml:mn>64.5</mml:mn>
</mml:mrow>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula>Zr<jats:inline-formula><jats:alternatives><jats:tex-math>$$_{35.5}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mrow />
<mml:mrow>
<mml:mn>35.5</mml:mn>
</mml:mrow>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula>. In all samples, the atomic density is reduced in the plastic zone; this reduction is accompanied by a decrease of the average atom coordination, with the possible exception of Cu<jats:inline-formula><jats:alternatives><jats:tex-math>$$_{35.5}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mrow />
<mml:mrow>
<mml:mn>35.5</mml:mn>
</mml:mrow>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula>Zr<jats:inline-formula><jats:alternatives><jats:tex-math>$$_{64.5}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mrow />
<mml:mrow>
<mml:mn>64.5</mml:mn>
</mml:mrow>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula>, where coordination fluctuations are high. The strongest density reduction occurs in Cu<jats:inline-formula><jats:alternatives><jats:tex-math>$$_{64.5}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mrow />
<mml:mrow>
<mml:mn>64.5</mml:mn>
</mml:mrow>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula>Zr<jats:inline-formula><jats:alternatives><jats:tex-math>$$_{35.5}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mrow />
<mml:mrow>
<mml:mn>35.5</mml:mn>
</mml:mrow>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula>, where it is connected with the partial destruction of full icosahedral short-range order. The difference in plasticity mechanism influences the shape of the pileup and of the chip generated by nanoindentation and cutting, respectively.
In application/xml+jats
format
Archived Files and Locations
application/pdf
3.2 MB
file_px24r2br3jcqlcva2hofba2rpi
|
link.springer.com (publisher) web.archive.org (webarchive) |
access all versions, variants, and formats of this works (eg, pre-prints)
Crossref Metadata (via API)
Worldcat
SHERPA/RoMEO (journal policies)
wikidata.org
CORE.ac.uk
Semantic Scholar
Google Scholar