Unfolding plane curves with cusps and nodes release_hykut23drrgyrcrtlbsqj6efuu

by Juan J. Nuño Ballesteros

Published in Proceedings of the Royal Society of Edinburgh. Section A Mathematics by Cambridge University Press (CUP).

2015   Volume 145, Issue 01, p161-174

Abstract

Given an irreducible surface germ (<jats:italic>X</jats:italic>, 0) ⊂ (ℂ<jats:sup>3</jats:sup>, 0) with a one-dimensional singular set<jats:italic>Σ</jats:italic>, we denote by<jats:italic>δ</jats:italic><jats:sub>1</jats:sub>(<jats:italic>X</jats:italic>, 0) the delta invariant of a transverse slice. We show that<jats:italic>δ</jats:italic><jats:sub>1</jats:sub>(<jats:italic>X</jats:italic>, 0) ≥<jats:italic>m</jats:italic><jats:sub>0</jats:sub>(<jats:italic>Σ</jats:italic>, 0), with equality if and only if (<jats:italic>X</jats:italic>, 0) admits a corank 1 parametrization<jats:italic>f</jats:italic>:(ℂ<jats:sup>2</jats:sup>, 0) → (ℂ<jats:sup>3</jats:sup>, 0) whose only singularities outside the origin are transverse double points and semi-cubic cuspidal edges. We then use the local Euler obstruction Eu(<jats:italic>X</jats:italic>, 0) in order to characterize those surfaces that have finite codimension with respect to<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S0308210513000632_inline1" xlink:type="simple" />-equivalence or as a frontal-type singularity.
In application/xml+jats format

Archived Files and Locations

application/pdf   250.2 kB
file_d5bqbi7guzggddpqclkfvarytq
application/pdf   27.2 kB
file_zovfg3kgjnhdjcaupgvz2jv7xu
www.math.kobe-u.ac.jp (web)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  article-journal
Stage   published
Year   2015
Language   en ?
Proceedings Metadata
Not in DOAJ
In Keepers Registry
ISSN-L:  0308-2105
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: 8fb29de3-4db6-4644-b6be-940b8e807d92
API URL: JSON