Opposing Effects of 5,7-DHT Infusions into the Orbitofrontal Cortex and Amygdala on Flexible Responding release_h2m5flsg4jf5rdv662e3uwy3d4

by M. S. Man, J. W. Dalley, A. C. Roberts

References

NOTE: currently batch computed and may include additional references sources, or be missing recent changes, compared to entity reference list.
Fuzzy reference matching is a work in progress!
Read more about quality, completeness, and caveats in the fatcat guide.
Showing 1 - 30 of 45 references (in 96ms)
[1_29082500]

via crossref
Amygdala–frontal connectivity during emotion regulation
Sarah J. Banks, Kamryn T. Eddy, Mike Angstadt, Pradeep J. Nathan, K. Luan Phan
2007   Social Cognitive and Affective Neuroscience
doi:10.1093/scan/nsm029  pmcid:PMC2566753  pmid:18985136 
web.archive.org [PDF]
[2_6167555]

via crossref
Possible serotonergic mechanisms underlying the antidepressant and anti-obsessive–compulsive disorder responses
Pierre Blier, Claude de Montigny
1998   Biological Psychiatry
doi:10.1016/s0006-3223(98)00114-0  pmid:9755353 
[3_18213134]

via crossref
The selective serotonin reuptake inhibitor citalopram increases fear after acute treatment but reduces fear with chronic treatment: a comparison with tianeptine
Nesha S. Burghardt, Gregory M. Sullivan, Bruce S. McEwen, Jack M. Gorman, Joseph E. LeDoux
2004   Biological Psychiatry
doi:10.1016/j.biopsych.2004.02.029  pmid:15184036 
[4_18572531]

via crossref
Amygdala responses to human faces in obsessive-compulsive disorder
Paul A. Cannistraro, Christopher I. Wright, Michelle M. Wedig, Brian Martis, Lisa M. Shin, Sabine Wilhelm, Scott L. Rauch
2004   Biological Psychiatry
doi:10.1016/j.biopsych.2004.09.029  pmid:15601600 
[5_17172125]

via crossref
Effects of selective excitotoxic lesions of the nucleus accumbens core, anterior cingulate cortex, and central nucleus of the amygdala on autoshaping performance in rats.
Rudolf N. Cardinal, John A. Parkinson, Guillaume Lachenal, Katherine M. Halkerston, Nung Rudarakanchana, Jeremy Hall, Caroline H. Morrison, Simon R. Howes (+ more)
2002   Behavioral Neuroscience
doi:10.1037/0735-7044.116.4.553 
web.archive.org [PDF]
[6_16399843]

via crossref
Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys
S. T. Carmichael, J. L. Price
1995   Journal of Comparative Neurology
doi:10.1002/cne.903630408  pmid:8847421 
[7_18172904]

via crossref
Cognitive Inflexibility After Prefrontal Serotonin Depletion
H. F. Clarke
2004   Science
doi:10.1126/science.1094987  pmid:15131308 
[b7]

via fuzzy
Prefrontal Serotonin Depletion Affects Reversal Learning But Not Attentional Set Shifting
H. F. Clarke
2005   Journal of Neuroscience
doi:10.1523/jneurosci.3690-04.2005  pmid:15647499 
web.archive.org [PDF]
[b8]

via grobid
Clarke HF, Walker SC, Dalley JW, Robbins TW, Roberts AC. 2007. Cognitive inflexibility after prefrontal serotonin depletion is behav- iourally and neurochemically specific. Cereb Cortex. 17:18--27.
[21621541]

via crossref
Cognitive Inflexibility after Prefrontal Serotonin Depletion Is Behaviorally and Neurochemically Specific
H. Clarke, S. Walker, J. Dalley, T. Robbins, A. Roberts
2006   Cerebral Cortex
doi:10.1093/cercor/bhj120  pmid:16481566 
web.archive.org [PDF]
[31537393]

via crossref
Acute Tryptophan Depletion in Healthy Volunteers Enhances Punishment Prediction but Does not Affect Reward Prediction
Roshan Cools, Oliver J Robinson, Barbara Sahakian
2007   Neuropsychopharmacology
doi:10.1038/sj.npp.1301598  pmid:17940553 
web.archive.org [PDF]
[17051063]

via crossref
Deficits in Impulse Control Associated with Tonically-elevated Serotonergic Function in Rat Prefrontal Cortex
J Dalley
2002   Neuropsychopharmacology
doi:10.1016/s0893-133x(01)00412-2  pmid:12007742 
[29493495]

via crossref
Serotonergic genes modulate amygdala activity in major depression
U. Dannlowski, P. Ohrmann, J. Bauer, H. Kugel, B. T. Baune, C. Hohoff, A. Kersting, V. Arolt (+ more)
2007   Genes, Brain and Behavior
doi:10.1111/j.1601-183x.2006.00297.x  pmid:17284168 
[b13]

via fuzzy
Serotonin in Affective Control
Peter Dayan, Quentin J.M. Huys
2009   Annual Review of Neuroscience
doi:10.1146/annurev.neuro.051508.135607  pmid:19400722 
web.archive.org [PDF]
[35952291]

via crossref
Hypersensitivity of 5-HT2 receptors in OCD patients
Aart S. de Leeuw, Herman G.M. Westenberg
2008   Journal of Psychiatric Research
doi:10.1016/j.jpsychires.2007.09.001  pmid:18533183 
[17_5000879]

via crossref
5HT2 receptors, depression and anxiety
J.F.W. Deakin
1988   Pharmacology, Biochemistry and Behavior
doi:10.1016/0091-3057(88)90215-8  pmid:3413204 
[16183416]

via crossref
Dissociation in prefrontal cortex of affective and attentional shifts
R. Dias, T. W. Robbins, A. C. Roberts
1996   Nature
doi:10.1038/380069a0  pmid:8598908 
[11110341]

via crossref
Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders
Wayne C Drevets
2001   Current Opinion in Neurobiology
doi:10.1016/s0959-4388(00)00203-8  pmid:11301246 
[b18]

via fuzzy
Medial Prefrontal Cortex 5-HT2A Density Is Correlated with Amygdala Reactivity, Response Habituation, and Functional Coupling
P. M. Fisher, C. C. Meltzer, J. C. Price, R. L. Coleman, S. K. Ziolko, C. Becker, E. L. Moses-Kolko, S. L. Berga (+ more)
2009   Cerebral Cortex
doi:10.1093/cercor/bhp022  pmcid:PMC2758681  pmid:19321655 
web.archive.org [PDF]
[b19]

via grobid
Forster GL, Feng N, Watt MJ, Korzan WJ, Mouw NJ, Summers CH, Renner KJ. 2006. Corticotropin-releasing factor in the dorsal raphe elicits temporally distinct serotonergic responses in the limbic system in relation to fear behavior. Neuroscience. 141:1047--1055.
[33239926]

via crossref
Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala
H.T. Ghashghaei, C.C. Hilgetag, H. Barbas
2007   NeuroImage
doi:10.1016/j.neuroimage.2006.09.046  pmcid:PMC2045074  pmid:17126037 
web.archive.org [PDF]
[22049873]

via crossref
Antidepressant Drug Treatment Modifies the Neural Processing of Nonconscious Threat Cues
Catherine J. Harmer, Clare E. Mackay, Catriona B. Reid, Philip J. Cowen, Guy M. Goodwin
2006   Biological Psychiatry
doi:10.1016/j.biopsych.2005.10.015  pmid:16460693 
[19530117]

via crossref
Opposing effects of amygdala and orbital prefrontal cortex lesions on the extinction of instrumental responding in macaque monkeys
Alicia Izquierdo, Elisabeth A. Murray
2005   European Journal of Neuroscience
doi:10.1111/j.1460-9568.2005.04434.x  pmid:16262672 
web.archive.org [PDF]
[23578483]

via crossref
Selective Bilateral Amygdala Lesions in Rhesus Monkeys Fail to Disrupt Object Reversal Learning
A. Izquierdo, E. A. Murray
2007   Journal of Neuroscience
doi:10.1523/jneurosci.3616-06.2007  pmcid:PMC6673199  pmid:17267559 
web.archive.org [PDF]
[12321771]

via crossref
Limbic lesions and the problem of stimulus—Reinforcement associations
B. Jones, M. Mishkin
1972   Experimental Neurology
doi:10.1016/0014-4886(72)90030-1  pmid:4626489 
[31682780]

via crossref
The Role of the Orbitofrontal Cortex and Medial Striatum in the Regulation of Prepotent Responses to Food Rewards
M.S. Man, H.F. Clarke, A.C. Roberts
2008   Cerebral Cortex
doi:10.1093/cercor/bhn137  pmid:18689858 
web.archive.org [PDF]
[b26]

via grobid
Jones B, Mishkin M. 1972. Limbic lesions and the problem of stimulus- reinforcement associations. Exp Neurol. 36:362--377.
[31449637]

via crossref
Uncoupling of behavioral and autonomic responses after lesions of the primate orbitofrontal cortex
Y. L. Reekie, K. Braesicke, M. S. Man, A. C. Roberts
2008   Proceedings of the National Academy of Sciences of the United States of America
doi:10.1073/pnas.0800417105  pmcid:PMC2447863  pmid:18621690 
web.archive.org [PDF]
[b28]

via grobid
Macmillan NA, Creelman CD. 1991. Detection theory: a user's guide. Cambridge: Cambridge University Press.
[10473163]

via crossref
FUNCTIONAL NEUROIMAGING AND THE NEUROANATOMY OF OBSESSIVE-COMPULSIVE DISORDER
Sanjaya Saxena, Scott L. Rauch
2000   Psychiatric Clinics of North America
doi:10.1016/s0193-953x(05)70181-7  pmid:10986728 
Showing 1 - 30 of 45 references  next »