Increased plasma apoM levels impair triglyceride turnover in mice
release_f4k7owua7bhg5g5xfq5hjlkozq
by
Stefan Hajny,
Anna Borup,
Sara Elsøe,
Christina Christoffersen
2021 p158969
Abstract
Apolipoprotein M (apoM) is an essential transporter of plasma Sphingosine-1-Phosphate (S1P), typically attached to all lipoprotein classes, but with a majority bound to high density lipoproteins (HDL). ApoM-deficient mice display an increased activity in brown adipose tissue and a concomitant fast turnover of triglycerides. In what manner apoM/S1P affect the triglyceride metabolism is however still unknown and explored in the present study.
Triglyceride turnover and potentially associated metabolic pathways were studied in the female human apoM transgenic mouse model (apoM-Tg) with increased plasma apoM and S1P levels. The model was compared with wild type (WT) mice.
ApoM-Tg mice had a reduced plasma triglyceride turnover rate and a lower free fatty acid uptake in subcutaneous adipocytes compared to WT mice. Screening for potential molecular mechanisms furthermore revealed a reduction in plasma lipase activity in apoM-Tg animals. Overexpression of apoM also reduced the plasma levels of fibroblast growth factor 21 (FGF21).
The study features the significant role of the apoM/S1P axis in maintaining a balanced triglyceride metabolism. Further, it also highlights the risk of inducing dyslipidaemia in patients receiving S1P-analouges but also suggest the apoM/S1P axis as a potential therapeutic target in treatment of hypertriglyceridemia.
In text/plain
format
Archived Files and Locations
application/pdf
2.0 MB
file_sjoij3tkdvdptmhuaer42iobm4
|
pdf.sciencedirectassets.com (publisher) web.archive.org (webarchive) |
access all versions, variants, and formats of this works (eg, pre-prints)
Crossref Metadata (via API)
Worldcat
SHERPA/RoMEO (journal policies)
wikidata.org
CORE.ac.uk
Semantic Scholar
Google Scholar