ON THE HOCHSCHILD HOMOLOGY OF INVOLUTIVE ALGEBRAS
release_enm34ulrp5bwtc236nycjiis7u
by
RAMSÈS FERNÀNDEZ-VALÈNCIA,
JEFFREY GIANSIRACUSA
2017 Volume 60, Issue 01, p187-198
Abstract
<jats:title>Abstract</jats:title>
We study the homological algebra of bimodules over involutive associative algebras. We show that Braun's definition of involutive Hochschild cohomology in terms of the complex of involution-preserving derivations is indeed computing a derived functor: the ℤ/2-invariants intersected with the centre. We then introduce the corresponding involutive Hochschild homology theory and describe it as the derived functor of the pushout of ℤ/2-coinvariants and abelianization.
In application/xml+jats
format
Archived Files and Locations
application/pdf
121.4 kB
file_tole2untjjbxpnrgrf2la3eecq
| |
application/pdf
200.9 kB
file_ij52sx3nobhl3nqvzajyrd4hzu
|
cronfa.swan.ac.uk (repository) web.archive.org (webarchive) |
access all versions, variants, and formats of this works (eg, pre-prints)
Crossref Metadata (via API)
Worldcat
SHERPA/RoMEO (journal policies)
wikidata.org
CORE.ac.uk
Semantic Scholar
Google Scholar