ON THE HOCHSCHILD HOMOLOGY OF INVOLUTIVE ALGEBRAS release_enm34ulrp5bwtc236nycjiis7u

by RAMSÈS FERNÀNDEZ-VALÈNCIA, JEFFREY GIANSIRACUSA

Published in Glasgow Mathematical Journal by Cambridge University Press (CUP).

2017   Volume 60, Issue 01, p187-198

Abstract

<jats:title>Abstract</jats:title> We study the homological algebra of bimodules over involutive associative algebras. We show that Braun's definition of involutive Hochschild cohomology in terms of the complex of involution-preserving derivations is indeed computing a derived functor: the ℤ/2-invariants intersected with the centre. We then introduce the corresponding involutive Hochschild homology theory and describe it as the derived functor of the pushout of ℤ/2-coinvariants and abelianization.
In application/xml+jats format

Archived Files and Locations

application/pdf   121.4 kB
file_tole2untjjbxpnrgrf2la3eecq
application/pdf   200.9 kB
file_ij52sx3nobhl3nqvzajyrd4hzu
cronfa.swan.ac.uk (repository)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  article-journal
Stage   published
Date   2017-02-07
Language   en ?
Container Metadata
Open Access Publication
Not in DOAJ
In Keepers Registry
ISSN-L:  0017-0895
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: aab33585-d3cf-4d3d-b02c-064043606e00
API URL: JSON