The gap-closing estimand: A causal approach to study interventions that close disparities across social categories
release_e2w7dikidfdf3fkqysknbkkvha
by
Ian Lundberg
2020
Abstract
Disparities across social categories such as race, gender, and class are central in social stratification. The complexity of these constructs, however, hinders their placement within a causal framework. On one hand, it is difficult to imagine a manipulation to alter the category to which one is assigned. On the other hand, categories themselves may be mutable across time and place as a result of social forces such as government definitions of racial categories. This paper advances gap-closing estimands that define precise causal research goals without reifying the definitions of social categories or appealing to a hypothetical world in which one's categorization were different. Instead, a gap-closing estimand directs attention to a manipulable treatment variable and asks a causal question: what gap across categories would persist under a local intervention to equalize the treatment? The proposal extends related work from epidemiology in three ways. First, I clarify that the hypothetical intervention is local rather than global in nature; there is no appeal to simultaneously equalize the treatments of the entire population. Second, I formalize equalization at a single treatment value or at a stochastic rule for treatment assignment. Third, I connect these estimands to doubly-robust estimators that combine treatment and outcome modeling. I illustrate with an example about the gap in pay by class origins under an intervention to equalize occupational class destinations. The paper concludes with implications for practice: gap-closing estimands provide tools for the rigorous study of inequality across social categories that could inform policies to close gaps.
In application/xml+jats
format
Archived Files and Locations
application/pdf
437.8 kB
file_py343lvbabcsdfaorbndo2puvy
|
files.osf.io (publisher) web.archive.org (webarchive) |
post
Stage
unknown
Date 2020-05-19
access all versions, variants, and formats of this works (eg, pre-prints)
Crossref Metadata (via API)
Worldcat
wikidata.org
CORE.ac.uk
Semantic Scholar
Google Scholar