Convolution of multifractals and the local magnetization in a random
field Ising chain
release_dzrr4twiyrffrczm37hrfhh5wy
by
Thomas Nowotny,
Ulrich Behn
2001
Abstract
The local magnetization in the one-dimensional random-field Ising model is
essentially the sum of two effective fields with multifractal probability
measure. The probability measure of the local magnetization is thus the
convolution of two multifractals. In this paper we prove relations between the
multifractal properties of two measures and the multifractal properties of
their convolution. The pointwise dimension at the boundary of the support of
the convolution is the sum of the pointwise dimensions at the boundary of the
support of the convoluted measures and the generalized box dimensions of the
convolution are bounded from above by the sum of the generalized box dimensions
of the convoluted measures. The generalized box dimensions of the convolution
of Cantor sets with weights can be calculated analytically for certain
parameter ranges and illustrate effects we also encounter in the case of the
measure of the local magnetization. Returning to the study of this measure we
apply the general inequalities and present numerical approximations of the
D_q-spectrum. For the first time we are able to obtain results on multifractal
properties of a physical quantity in the one-dimensional random-field Ising
model which in principle could be measured experimentally. The numerically
generated probability densities for the local magnetization show impressively
the gradual transition from a monomodal to a bimodal distribution for growing
random field strength h.
In text/plain
format
Archived Content
There are no accessible files associated with this release. You could check other releases for this work for an accessible version.
Know of a fulltext copy of on the public web? Submit a URL and we will archive it
access all versions, variants, and formats of this works (eg, pre-prints)