Predicting The Yields Of Species Occupying A Single Trophic Level With Incomplete Information: Two Approximations Based On The Lotka-Volterra Generalized Equations release_ctplbzb2ffhwjgteyrpwjtic6a

by Hugo Fort

Released as a post by Cold Spring Harbor Laboratory.

2021  

Abstract

The linear Lotka-Volterra generalized equations (LLVGE) serve for describing the dynamics of communities of species connected by negative as well as positive interspecific interactions. Here we particularize these LLVGE to the case of a single trophic level community with S >2 species, either artificial or natural. In this case, by estimating the LLVGE parameters from the yields in monoculture and biculture experiments, the LLVGE are able to produce quite accurate predictions for species yields. However, a common situation we face is that we don't know all the parameters appearing in the LLVGE. Indeed, for large values of S, only a fraction of the experiments necessary for estimating the model parameters is commonly carried out. We then analyze which quantitative predictions are possible with an incomplete knowledge of the parameters. We discuss two approximations that allow using these LLVGE as a quantitative tool. First, when we only know a fraction of the model parameters, the mean field approximation allows making predictions on aggregate or average quantities. Second, for cases in which all the interaction parameters involving a particular species are available, we have the focal species approximation for predicting the yield of this focal species.
In application/xml+jats format

Archived Files and Locations

application/pdf   662.7 kB
file_xjqxuazcgrcuvjhyuxwqsdkhga
www.biorxiv.org (repository)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  post
Stage   unknown
Date   2021-01-04
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: 71ad5b65-8861-492d-a56a-443ccfbf62bd
API URL: JSON