Isomorphic Operators and Functional Equations for the Skew-Circulant Algebra
release_bn3aw2cogbggtihvy4eyiz4p4a
by
Zhaolin Jiang,
Tingting Xu,
Fuliang Lu
Abstract
The skew-circulant matrix has been used in solving ordinary differential equations. We prove that the set of skew-circulants with complex entries has an idempotent basis. On that basis, a skew-cyclic group of automorphisms and functional equations on the skew-circulant algebra is introduced. And different operators on linear vector space that are isomorphic to the algebra of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mi>n</mml:mi><mml:mo>×</mml:mo><mml:mi>n</mml:mi></mml:math>complex skew-circulant matrices are displayed in this paper.
In application/xml+jats
format
Archived Files and Locations
application/pdf
2.0 MB
file_hjuoo65fe5bw5k57jy5bhbcgjy
|
downloads.hindawi.com (publisher) web.archive.org (webarchive) |
application/pdf
221.2 kB
file_rqxcze2ktzgsxaepxwks3sdlcu
| |
application/pdf
556.0 kB
file_ehqof47v2jesbispekotls4f3y
|
projecteuclid.org (web) web.archive.org (webarchive) |
Open Access Publication
In DOAJ
In ISSN ROAD
In Keepers Registry
ISSN-L:
1085-3375
access all versions, variants, and formats of this works (eg, pre-prints)
Crossref Metadata (via API)
Worldcat
SHERPA/RoMEO (journal policies)
wikidata.org
CORE.ac.uk
Semantic Scholar
Google Scholar