Isomorphic Operators and Functional Equations for the Skew-Circulant Algebra release_bn3aw2cogbggtihvy4eyiz4p4a

by Zhaolin Jiang, Tingting Xu, Fuliang Lu

Published in Abstract and Applied Analysis by Hindawi Limited.

2014   Volume 2014, p1-8

Abstract

The skew-circulant matrix has been used in solving ordinary differential equations. We prove that the set of skew-circulants with complex entries has an idempotent basis. On that basis, a skew-cyclic group of automorphisms and functional equations on the skew-circulant algebra is introduced. And different operators on linear vector space that are isomorphic to the algebra of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mi>n</mml:mi><mml:mo>×</mml:mo><mml:mi>n</mml:mi></mml:math>complex skew-circulant matrices are displayed in this paper.
In application/xml+jats format

Archived Files and Locations

application/pdf   2.0 MB
file_hjuoo65fe5bw5k57jy5bhbcgjy
downloads.hindawi.com (publisher)
web.archive.org (webarchive)
application/pdf   221.2 kB
file_rqxcze2ktzgsxaepxwks3sdlcu
application/pdf   556.0 kB
file_ehqof47v2jesbispekotls4f3y
projecteuclid.org (web)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  article-journal
Stage   published
Year   2014
Language   en ?
Container Metadata
Open Access Publication
In DOAJ
In ISSN ROAD
In Keepers Registry
ISSN-L:  1085-3375
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: 324cd50a-355e-4e75-8651-77b692122186
API URL: JSON