On the spectral norm of a doubly stochastic matrix and level-<i>k</i> circulant matrix
release_bgfyioe4cjhd3jasvgi4lscyei
by
Zhao-Lin Jiang,
Tin-Yau Tam
Abstract
<jats:title>Abstract</jats:title>
A simple proof using Birkhoff theorem is given for the result that the spectral norm of a doubly stochastic matrix is 1. We also show that the result generalizes the results of İpek, Bozkurt, and Jiang and Zhou on circulant matrices and <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2023-0106_eq_001.png" />
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>r</m:mi>
</m:math>
<jats:tex-math>r</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>-circulant matrices. Spectral norm of level-<jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_spma-2023-0106_eq_002.png" />
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mi>k</m:mi>
</m:math>
<jats:tex-math>k</jats:tex-math>
</jats:alternatives>
</jats:inline-formula> circulant matrix and applications are given.
In application/xml+jats
format
Archived Files and Locations
application/pdf
2.7 MB
file_izi44takbvcllaklwwbafvxwz4
|
www.degruyter.com (publisher) web.archive.org (webarchive) |
Open Access Publication
In DOAJ
In ISSN ROAD
In Keepers Registry
ISSN-L:
2300-7451
access all versions, variants, and formats of this works (eg, pre-prints)
Crossref Metadata (via API)
Worldcat
SHERPA/RoMEO (journal policies)
wikidata.org
CORE.ac.uk
Semantic Scholar
Google Scholar