Equivalence of variance components between standard and recursive genetic models using LDL′ transformations release_avlld34lrfe5vk3tnacuekaz6u

by Luis Varona, David López-Carbonell, Houssemeddine Srihi, Carlos Hervás-Rivero, Óscar González-Recio, Juan Altarriba

Entity Metadata (schema)

abstracts[] {'sha1': 'fc2042ecf118f73354cecd8f2a818b99e9964a47', 'content': '<jats:title>Abstract</jats:title><jats:sec>\n <jats:title>Background</jats:title>\n Recursive models are a category of structural equation models that propose a causal relationship between traits. These models are more parameterized than multiple trait models, and they require imposing restrictions on the parameter space to ensure statistical identification. Nevertheless, in certain situations, the likelihood of recursive models and multiple trait models are equivalent. Consequently, the estimates of variance components derived from the multiple trait mixed model can be converted into estimates under several recursive models through LDL′ or block-LDL′ transformations.\n </jats:sec><jats:sec>\n <jats:title>Results</jats:title>\n The procedure was employed on a dataset comprising five traits (birth weight—BW, weight at 90\xa0days—W90, weight at 210\xa0days—W210, cold carcass weight—CCW and conformation—CON) from the Pirenaica beef cattle breed. These phenotypic records were unequally distributed among 149,029 individuals and had a high percentage of missing data. The pedigree used consisted of 343,753 individuals. A Bayesian approach involving a multiple-trait mixed model was applied using a Gibbs sampler. The variance components obtained at each iteration of the Gibbs sampler were subsequently used to estimate the variance components within three distinct recursive models.\n </jats:sec><jats:sec>\n <jats:title>Conclusions</jats:title>\n The LDL′ or block-LDL′ transformations applied to the variance component estimates achieved from a multiple trait mixed model enabled inference across multiple sets of recursive models, with the sole prerequisite of being likelihood equivalent. Furthermore, the aforementioned transformations simplify the handling of missing data when conducting inference within the realm of recursive models.\n </jats:sec>', 'mimetype': 'application/xml+jats', 'lang': None}
container {'state': 'active', 'ident': 'sfktpbocxvblnmfm7hdxdoxwaa', 'revision': '57d11f63-f684-4665-ba91-9877452c0023', 'redirect': None, 'extra': {'abbrev': 'Genet. Sel. Evol.', 'country': 'gb', 'default_license': 'CC-BY', 'doaj': {'archive': ['CLOCKSS', 'LOCKSS', 'PMC', 'Portico'], 'as_of': '2022-07-06', 'default_license': 'CC-BY, CC0', 'seal': True}, 'ia': {'sim': {'peer_reviewed': True, 'pub_type': 'Scholarly Journals', 'scholarly_peer_reviewed': True, 'sim_pubid': '42471', 'year_spans': [[1989, 1990], [1999, 1999]]}}, 'kbart': {'clockss': {'year_spans': [[1997, 2022]]}, 'hathitrust': {'year_spans': [[1989, 1989], [1992, 1998]]}, 'lockss': {'year_spans': [[2000, 2018]]}, 'portico': {'year_spans': [[1969, 2022]]}, 'scholarsportal': {'year_spans': [[1995, 1999]]}}, 'languages': ['en'], 'platform': 'bmc', 'road': {'as_of': '2018-01-24'}, 'sherpa_romeo': {'color': 'green'}, 'urls': ['http://www.pubmedcentral.nih.gov/tocrender.fcgi?action=archive&journal=847', 'http://www.gsejournal.org/', 'http://www.gsejournal.org/home']}, 'edit_extra': None, 'name': 'Genetics Selection Evolution', 'container_type': None, 'publication_status': None, 'publisher': 'Springer (Biomed Central Ltd.)', 'issnl': '0999-193X', 'issne': '1297-9686', 'issnp': '0999-193X', 'wikidata_qid': 'Q3544673'}
container_id sfktpbocxvblnmfm7hdxdoxwaa
contribs[] {'index': 0, 'creator_id': None, 'creator': None, 'raw_name': 'Luis Varona', 'given_name': 'Luis', 'surname': 'Varona', 'role': 'author', 'raw_affiliation': None, 'extra': {'seq': 'first'}}
{'index': 1, 'creator_id': None, 'creator': None, 'raw_name': 'David López-Carbonell', 'given_name': 'David', 'surname': 'López-Carbonell', 'role': 'author', 'raw_affiliation': None, 'extra': None}
{'index': 2, 'creator_id': None, 'creator': None, 'raw_name': 'Houssemeddine Srihi', 'given_name': 'Houssemeddine', 'surname': 'Srihi', 'role': 'author', 'raw_affiliation': None, 'extra': None}
{'index': 3, 'creator_id': None, 'creator': None, 'raw_name': 'Carlos Hervás-Rivero', 'given_name': 'Carlos', 'surname': 'Hervás-Rivero', 'role': 'author', 'raw_affiliation': None, 'extra': None}
{'index': 4, 'creator_id': None, 'creator': None, 'raw_name': 'Óscar González-Recio', 'given_name': 'Óscar', 'surname': 'González-Recio', 'role': 'author', 'raw_affiliation': None, 'extra': None}
{'index': 5, 'creator_id': None, 'creator': None, 'raw_name': 'Juan Altarriba', 'given_name': 'Juan', 'surname': 'Altarriba', 'role': 'author', 'raw_affiliation': None, 'extra': None}
ext_ids {'doi': '10.1186/s12711-024-00901-x', 'wikidata_qid': None, 'isbn13': None, 'pmid': None, 'pmcid': None, 'core': None, 'arxiv': None, 'jstor': None, 'ark': None, 'mag': None, 'doaj': None, 'dblp': None, 'oai': None, 'hdl': None}
files[] {'state': 'active', 'ident': 'llja3cgyevg7bjn6ff5jiiov4m', 'revision': '9fda595d-da96-4b34-a179-389c16a386b9', 'redirect': None, 'extra': None, 'edit_extra': None, 'size': 1713637, 'md5': '68808b797a8961bad5a08f4f4606422d', 'sha1': '99551558ad96a377a7b6dc9cb7a9ee55d70f57ce', 'sha256': 'b7962a4bcd9219f28aec759f209693654a1d43ba58cbddb991a7c57fc5dacc8b', 'urls': [{'url': 'https://gsejournal.biomedcentral.com/counter/pdf/10.1186/s12711-024-00901-x.pdf', 'rel': 'publisher'}, {'url': 'https://web.archive.org/web/20240528050906/https://gsejournal.biomedcentral.com/counter/pdf/10.1186/s12711-024-00901-x.pdf', 'rel': 'webarchive'}], 'mimetype': 'application/pdf', 'content_scope': None, 'release_ids': ['avlld34lrfe5vk3tnacuekaz6u'], 'releases': None}
filesets []
issue 1
language en
license_slug CC-BY
number
original_title
pages
publisher Springer Science and Business Media LLC
refs[] {'index': 0, 'target_release_id': None, 'extra': {'authors': ['J Pearl'], 'doi': '10.1017/cbo9780511803161', 'edition': '2', 'unstructured': 'Pearl J. Causality: models, reasoning, and inference. 2nd ed. Cambridge: Cambridge University Press; 2009.', 'volume-title': 'Causality: models, reasoning, and inference'}, 'key': '901_CR1', 'year': 2009, 'container_name': 'Causality: models, reasoning, and inference', 'title': None, 'locator': None}
{'index': 1, 'target_release_id': None, 'extra': {'authors': ['D Gianola'], 'doi': '10.1534/genetics.103.025734', 'unstructured': 'Gianola D, Sorensen D. Quantitative genetic models for describing simultaneous and recursive relationships between phenotypes. Genetics. 2004;167:1407–24.', 'volume': '167'}, 'key': '901_CR2', 'year': 2004, 'container_name': 'Genetics', 'title': None, 'locator': '1407'}
{'index': 2, 'target_release_id': None, 'extra': {'authors': ['CG De Los'], 'doi': '10.3168/jds.s0022-0302(06)72493-6', 'unstructured': 'De Los CG, Gianola D, Heringstad B. A structural equation model for describing relationships between somatic cell score and milk yield in first-lactation dairy cows. J Dairy Sci. 2006;89:4445–55.', 'volume': '89'}, 'key': '901_CR3', 'year': 2006, 'container_name': 'J Dairy Sci', 'title': None, 'locator': '4445'}
{'index': 3, 'target_release_id': None, 'extra': {'authors': ['E López De Maturana'], 'doi': '10.3168/jds.2005-442', 'unstructured': 'López De Maturana E, Legarra A, Varona L, Ugarte E. Analysis of fertility and dystocia in holsteins using recursive models to handle censored and categorical data. J Dairy Sci. 2007;90:2012–24.', 'volume': '90'}, 'key': '901_CR4', 'year': 2007, 'container_name': 'J Dairy Sci', 'title': None, 'locator': '2012'}
{'index': 4, 'target_release_id': None, 'extra': {'authors': ['BD Valente'], 'doi': '10.1186/1297-9686-43-37', 'unstructured': 'Valente BD, Rosa GJM, Silva MA, Teixeira RB, Torres RA. Searching for phenotypic causal networks involving complex traits: an application to European quail. Genet Sel Evol. 2011;43:37.', 'volume': '43'}, 'key': '901_CR5', 'year': 2011, 'container_name': 'Genet Sel Evol', 'title': None, 'locator': '37'}
{'index': 5, 'target_release_id': None, 'extra': {'authors': ['CR Henderson'], 'unstructured': 'Henderson CR. Applications of linear models in animal breeding. Guelph: University of Guelph; 1984.', 'volume-title': 'Applications of linear models in animal breeding'}, 'key': '901_CR6', 'year': 1984, 'container_name': 'Applications of linear models in animal breeding', 'title': None, 'locator': None}
{'index': 6, 'target_release_id': None, 'extra': {'authors': ['L Varona'], 'doi': '10.1534/genetics.107.077818', 'unstructured': 'Varona L, Sorensen D, Thompson R. Analysis of litter size and average litter weight in pigs using a recursive model. Genetics. 2007;177:1791–9.', 'volume': '177'}, 'key': '901_CR7', 'year': 2007, 'container_name': 'Genetics', 'title': None, 'locator': '1791'}
{'index': 7, 'target_release_id': None, 'extra': {'authors': ['MA Tanner'], 'doi': '10.1080/01621459.1987.10478458', 'unstructured': 'Tanner MA, Wong WH. The calculation of posterior distributions by data augmentation. J Am Stat Assoc. 1987;82:528–40.', 'volume': '82'}, 'key': '901_CR8', 'year': 1987, 'container_name': 'J Am Stat Assoc', 'title': None, 'locator': '528'}
{'index': 8, 'target_release_id': None, 'extra': {'authors': ['I Misztal'], 'unstructured': 'Misztal I, Tsuruta S, Lourenco D, Aguilar I, Legarra A, Vitezica Z. Manual for BLUPF90 family of programs. Athens: University of Georgia; 2018.', 'volume-title': 'Manual for BLUPF90 family of programs'}, 'key': '901_CR9', 'year': 2018, 'container_name': 'Manual for BLUPF90 family of programs', 'title': None, 'locator': None}
{'index': 9, 'target_release_id': None, 'extra': {'unstructured': 'Madsen P, Jensen J, Labouriau R, Christensen OF, Sahana G. DMU—a package for analyzing multivariate mixed models in quantitative genetics and genomics. In: Proceedings of the 10th world congress on genetics applied to livestock production. 17–22 August 2014; Vancouver. 2014.'}, 'key': '901_CR10', 'year': None, 'container_name': None, 'title': None, 'locator': None}
{'index': 10, 'target_release_id': None, 'extra': {'authors': ['K Meyer'], 'doi': '10.1631/jzus.2007.b0815', 'unstructured': 'Meyer K. WOMBAT: a tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML). J Zhejiang Univ Sci B. 2007;8:815–21.', 'volume': '8'}, 'key': '901_CR11', 'year': 2007, 'container_name': 'J Zhejiang Univ Sci B', 'title': None, 'locator': '815'}
{'index': 11, 'target_release_id': None, 'extra': {'authors': ['L Varona'], 'doi': '10.3168/jds.2022-22578', 'unstructured': 'Varona L, González-Recio O. Invited review: recursive models in animal breeding: interpretation, limitations, and extensions. J Dairy Sci. 2023;106:2198–212.', 'volume': '106'}, 'key': '901_CR12', 'year': 2023, 'container_name': 'J Dairy Sci', 'title': None, 'locator': '2198'}
{'index': 12, 'target_release_id': None, 'extra': {'authors': ['J Altarriba'], 'doi': '10.1016/j.livsci.2009.03.013', 'unstructured': 'Altarriba J, Yagüe G, Moreno C, Varona L. Exploring the possibilities of genetic improvement from traceability data. An example in the Pirenaica beef cattle. Livest Sci. 2009;125:115–20.', 'volume': '125'}, 'key': '901_CR13', 'year': 2009, 'container_name': 'Livest Sci', 'title': None, 'locator': '115'}
{'index': 13, 'target_release_id': None, 'extra': {'authors': ['AE Gelfand'], 'doi': '10.1080/01621459.1990.10476213', 'unstructured': 'Gelfand AE, Smith AFM. Sampling-based approaches to calculating marginal densities. J Am Stat Assoc. 1990;85:398–409.', 'volume': '85'}, 'key': '901_CR14', 'year': 1990, 'container_name': 'J Am Stat Assoc', 'title': None, 'locator': '398'}
{'index': 14, 'target_release_id': None, 'extra': {'authors': ['CP Van Tassell'], 'doi': '10.2527/1996.74112586x', 'unstructured': 'Van Tassell CP, Van Vleck LD. Multiple-trait Gibbs sampler for animal models: flexible programs for Bayesian and likelihood-based (co)variance component inference. J Anim Sci. 1996;74:2586–97.', 'volume': '74'}, 'key': '901_CR15', 'year': 1996, 'container_name': 'J Anim Sci', 'title': None, 'locator': '2586'}
{'index': 15, 'target_release_id': None, 'extra': {'authors': ['M Plummer'], 'unstructured': 'Plummer M, Best N, Cowles K, Vines K. CODA: convergence diagnosis and output analysis for MCMC. R News. 2006;6:7–11.', 'volume': '6'}, 'key': '901_CR16', 'year': 2006, 'container_name': 'R News', 'title': None, 'locator': '7'}
{'index': 16, 'target_release_id': None, 'extra': {'authors': ['AR Utrera'], 'unstructured': 'Utrera AR, Van Vleck LD. Heritability estimates for carcass traits of cattle: a review. Genet Mol Res. 2004;3:380–94.', 'volume': '3'}, 'key': '901_CR17', 'year': 2004, 'container_name': 'Genet Mol Res', 'title': None, 'locator': '380'}
{'index': 17, 'target_release_id': None, 'extra': {'authors': ['BD Valente'], 'doi': '10.1534/genetics.113.151209', 'unstructured': 'Valente BD, Rosa GJM, Gianola D, Wu X-L, Weigel K. Is structural equation modeling advantageous for the genetic improvement of multiple traits? Genetics. 2013;194:561–72.', 'volume': '194'}, 'key': '901_CR18', 'year': 2013, 'container_name': 'Genetics', 'title': None, 'locator': '561'}
{'index': 18, 'target_release_id': None, 'extra': {'authors': ['GJM Rosa'], 'doi': '10.2527/jas.2012-5840', 'unstructured': 'Rosa GJM, Valente BD. BREEDING AND GENETICS SYMPOSIUM: Inferring causal effects from observational data in livestock. J Anim Sci. 2013;91:553–64.', 'volume': '91'}, 'key': '901_CR19', 'year': 2013, 'container_name': 'J Anim Sci', 'title': None, 'locator': '553'}
release_date 2024-05-02
release_stage published
release_type article-journal
release_year 2024
subtitle
title Equivalence of variance components between standard and recursive genetic models using LDL′ transformations
version
volume 56
webcaptures []
withdrawn_date
withdrawn_status
withdrawn_year
work_id j4u5zxmcnzc4hgewgjbqbbyyme
As JSON via API

Extra Metadata (raw JSON)

crossref.alternative-id ['901']
crossref.license [{'URL': 'https://creativecommons.org/licenses/by/4.0', 'content-version': 'vor', 'delay-in-days': 0, 'start': '2024-05-02T00:00:00Z'}]
crossref.type journal-article