The history of the muon (g-2) experiments release_asn6aczx25ewvor4kpqqbv5bbu

by B. Lee Roberts

Published in SciPost Physics Proceedings by Stichting SciPost.

2019  

Abstract

I discuss the history of the muon <jats:inline-formula><jats:alternatives><jats:tex-math>(g-2)</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mo stretchy="false" form="prefix">(</mml:mo><mml:mi>g</mml:mi><mml:mo>−</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false" form="postfix">)</mml:mo></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> measurements, beginning with the Columbia-Nevis measurement that observed parity violation in muon decay, and also measured the muon <jats:inline-formula><jats:alternatives><jats:tex-math>g</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>g</mml:mi></mml:math></jats:alternatives></jats:inline-formula>-factor for the first time, finding <jats:inline-formula><jats:alternatives><jats:tex-math>g_\mu=2</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mi>g</mml:mi><mml:mi>μ</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>. The theoretical (Standard Model) value contains contributions from quantum electrodynamics, the strong interaction through hadronic vacuum polarization and hadronic light-by-light loops, as well as the electroweak contributions from the <jats:inline-formula><jats:alternatives><jats:tex-math>W</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>W</mml:mi></mml:math></jats:alternatives></jats:inline-formula>, <jats:inline-formula><jats:alternatives><jats:tex-math>Z</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Z</mml:mi></mml:math></jats:alternatives></jats:inline-formula> and Higgs bosons. The subsequent experiments, first at Nevis and then with increasing precision at CERN, measured the muon anomaly <jats:inline-formula><jats:alternatives><jats:tex-math>a_\mu = (g_\mu-2)/2</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mi>a</mml:mi><mml:mi>μ</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mo stretchy="false" form="prefix">(</mml:mo><mml:msub><mml:mi>g</mml:mi><mml:mi>μ</mml:mi></mml:msub><mml:mo>−</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false" form="postfix">)</mml:mo><mml:mi>/</mml:mi><mml:mn>2</mml:mn></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> down to a precision of 7.3 parts per million (ppm). The Brookhaven National Laboratory experiment E821 increased the precision to 0.54 ppm, and observed for the first time the electroweak contributions. Interestingly, the value of <jats:inline-formula><jats:alternatives><jats:tex-math>a_\mu</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>a</mml:mi><mml:mi>μ</mml:mi></mml:msub></mml:math></jats:alternatives></jats:inline-formula> measured at Brookhaven appears to be larger than the Standard Model value by greater than three standard deviations. A new experiment, Fermilab E989, aims to improve on the precision by a factor of four, to clarify whether this result is a harbinger of new physics entering through loops, or from some experimental, statistical or systematic issue.
In application/xml+jats format

Archived Files and Locations

application/pdf   3.5 MB
file_sorck7lzvvfxpikmbivmhcjtki
web.archive.org (webarchive)
scipost.org (web)
Read Archived PDF
Preserved and Accessible
Type  article-journal
Stage   published
Date   2019-02-20
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: 67eb7526-19a1-4072-a84d-f64b24281cd4
API URL: JSON