The history of the muon (g-2) experiments
release_asn6aczx25ewvor4kpqqbv5bbu
by
B. Lee Roberts
2019
Abstract
I discuss the history of the muon <jats:inline-formula><jats:alternatives><jats:tex-math>(g-2)</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mo stretchy="false" form="prefix">(</mml:mo><mml:mi>g</mml:mi><mml:mo>−</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false" form="postfix">)</mml:mo></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>
measurements, beginning with the Columbia-Nevis measurement that
observed parity violation in muon decay, and also measured the muon
<jats:inline-formula><jats:alternatives><jats:tex-math>g</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>g</mml:mi></mml:math></jats:alternatives></jats:inline-formula>-factor
for the first time, finding <jats:inline-formula><jats:alternatives><jats:tex-math>g_\mu=2</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mi>g</mml:mi><mml:mi>μ</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>.
The theoretical (Standard Model) value contains contributions from
quantum electrodynamics, the strong interaction through hadronic vacuum
polarization and hadronic light-by-light loops, as well as the
electroweak contributions from the <jats:inline-formula><jats:alternatives><jats:tex-math>W</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>W</mml:mi></mml:math></jats:alternatives></jats:inline-formula>,
<jats:inline-formula><jats:alternatives><jats:tex-math>Z</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Z</mml:mi></mml:math></jats:alternatives></jats:inline-formula>
and Higgs bosons. The subsequent experiments, first at Nevis and then
with increasing precision at CERN, measured the muon anomaly
<jats:inline-formula><jats:alternatives><jats:tex-math>a_\mu = (g_\mu-2)/2</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mi>a</mml:mi><mml:mi>μ</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mo stretchy="false" form="prefix">(</mml:mo><mml:msub><mml:mi>g</mml:mi><mml:mi>μ</mml:mi></mml:msub><mml:mo>−</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false" form="postfix">)</mml:mo><mml:mi>/</mml:mi><mml:mn>2</mml:mn></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>
down to a precision of 7.3 parts per million (ppm). The Brookhaven
National Laboratory experiment E821 increased the precision to 0.54 ppm,
and observed for the first time the electroweak contributions.
Interestingly, the value of <jats:inline-formula><jats:alternatives><jats:tex-math>a_\mu</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>a</mml:mi><mml:mi>μ</mml:mi></mml:msub></mml:math></jats:alternatives></jats:inline-formula>
measured at Brookhaven appears to be larger than the Standard Model
value by greater than three standard deviations. A new experiment,
Fermilab E989, aims to improve on the precision by a factor of four, to
clarify whether this result is a harbinger of new physics entering
through loops, or from some experimental, statistical or systematic
issue.
In application/xml+jats
format
Archived Files and Locations
application/pdf
3.5 MB
file_sorck7lzvvfxpikmbivmhcjtki
|
web.archive.org (webarchive) scipost.org (web) |
article-journal
Stage
published
Date 2019-02-20
access all versions, variants, and formats of this works (eg, pre-prints)
Crossref Metadata (via API)
Worldcat
wikidata.org
CORE.ac.uk
Semantic Scholar
Google Scholar