Arithmetic of hyperelliptic curves over local fields release_aqk54ybpkvaqdoapfcyp7hfa5q

by Tim Dokchitser, Vladimir Dokchitser, Céline Maistret, Adam Morgan

Published in Mathematische Annalen by Springer Science and Business Media LLC.

2022  

Abstract

<jats:title>Abstract</jats:title>We study hyperelliptic curves <jats:inline-formula><jats:alternatives><jats:tex-math>$$y^2 = f(x)$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msup> <mml:mi>y</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>=</mml:mo> <mml:mi>f</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> over local fields of odd residue characteristic. We introduce the notion of a "cluster picture" associated to the curve, that describes the <jats:italic>p</jats:italic>-adic distances between the roots of <jats:italic>f</jats:italic>(<jats:italic>x</jats:italic>), and show that this elementary combinatorial object encodes the curve's Galois representation, conductor, whether the curve is semistable, and if so, the special fibre of its minimal regular model, the discriminant of its minimal Weierstrass equation and other invariants.
In application/xml+jats format

Archived Files and Locations

application/pdf   4.6 MB
file_r5mvglgnfzhdlblxpb7m56zfue
discovery.ucl.ac.uk (web)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  article-journal
Stage   published
Date   2022-02-20
Language   en ?
Container Metadata
Open Access Publication
Not in DOAJ
In Keepers Registry
ISSN-L:  0025-5831
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: 8bbfc778-caa0-44ec-b4b7-a6a8d9190b18
API URL: JSON