Arithmetic of hyperelliptic curves over local fields
release_aqk54ybpkvaqdoapfcyp7hfa5q
by
Tim Dokchitser,
Vladimir Dokchitser,
Céline Maistret,
Adam Morgan
Abstract
<jats:title>Abstract</jats:title>We study hyperelliptic curves <jats:inline-formula><jats:alternatives><jats:tex-math>$$y^2 = f(x)$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msup>
<mml:mi>y</mml:mi>
<mml:mn>2</mml:mn>
</mml:msup>
<mml:mo>=</mml:mo>
<mml:mi>f</mml:mi>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>x</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> over local fields of odd residue characteristic. We introduce the notion of a "cluster picture" associated to the curve, that describes the <jats:italic>p</jats:italic>-adic distances between the roots of <jats:italic>f</jats:italic>(<jats:italic>x</jats:italic>), and show that this elementary combinatorial object encodes the curve's Galois representation, conductor, whether the curve is semistable, and if so, the special fibre of its minimal regular model, the discriminant of its minimal Weierstrass equation and other invariants.
In application/xml+jats
format
Archived Files and Locations
application/pdf
4.6 MB
file_r5mvglgnfzhdlblxpb7m56zfue
|
discovery.ucl.ac.uk (web) web.archive.org (webarchive) |
access all versions, variants, and formats of this works (eg, pre-prints)
Crossref Metadata (via API)
Worldcat
SHERPA/RoMEO (journal policies)
wikidata.org
CORE.ac.uk
Semantic Scholar
Google Scholar