Stratified shear flow instabilities at large Richardson numbers
release_6kaa5r77hrgdznegr3ejo4xmlq
by
Alexandros Alexakis
2009
Abstract
Numerical simulations of stratified shear flow instabilities are performed in
two dimensions in the Boussinesq limit. The density variation length scale is
chosen to be four times smaller than the velocity variation length scale so
that Holmboe or Kelvin-Helmholtz unstable modes are present depending on the
choice of the global Richardson number Ri. Three different values of Ri were
examined Ri =0.2, 2, 20. The flows for the three examined values are all
unstable due to different modes namely: the Kelvin-Helmholtz mode for Ri=0.2,
the first Holmboe mode for Ri=2, and the second Holmboe mode for Ri=20 that has
been discovered recently and it is the first time that it is examined in the
non-linear stage. It is found that the amplitude of the velocity perturbation
of the second Holmboe mode at the non-linear stage is smaller but comparable to
first Holmboe mode. The increase of the potential energy however due to the
second Holmboe modes is greater than that of the first mode. The
Kelvin-Helmholtz mode is larger by two orders of magnitude in kinetic energy
than the Holmboe modes and about ten times larger in potential energy than the
Holmboe modes. The results in this paper suggest that although mixing is
suppressed at large Richardson numbers it is not negligible, and turbulent
mixing processes in strongly stratified environments can not be excluded.
In text/plain
format
Archived Files and Locations
application/pdf
2.1 MB
file_75adoxbcwzdl3bbcggrmemjstu
|
archive.org (archive) |
0901.1259v1
access all versions, variants, and formats of this works (eg, pre-prints)