Squarefree Integers in Arithmetic Progressions to Smooth Moduli
release_5qrwgtqrdzf3del2wexspdvfkq
Abstract
<jats:title>Abstract</jats:title>
Let <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S2050509421000670_inline1.png" />
<jats:tex-math>
$\varepsilon> 0$
</jats:tex-math>
</jats:alternatives>
</jats:inline-formula> be sufficiently small and let <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S2050509421000670_inline2.png" />
<jats:tex-math>
$0 < \eta < 1/522$
</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>. We show that if <jats:italic>X</jats:italic> is large enough in terms of <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S2050509421000670_inline3.png" />
<jats:tex-math>
$\varepsilon $
</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>, then for any squarefree integer <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S2050509421000670_inline4.png" />
<jats:tex-math>
$q \leq X^{196/261-\varepsilon }$
</jats:tex-math>
</jats:alternatives>
</jats:inline-formula> that is <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S2050509421000670_inline5.png" />
<jats:tex-math>
$X^{\eta }$
</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>-smooth one can obtain an asymptotic formula with power-saving error term for the number of squarefree integers in an arithmetic progression <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S2050509421000670_inline6.png" />
<jats:tex-math>
$a \pmod {q}$
</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>, with <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S2050509421000670_inline7.png" />
<jats:tex-math>
$(a,q) = 1$
</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>. In the case of squarefree, smooth moduli this improves upon previous work of Nunes, in which <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S2050509421000670_inline8.png" />
<jats:tex-math>
$196/261 = 0.75096\ldots $
</jats:tex-math>
</jats:alternatives>
</jats:inline-formula> was replaced by <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S2050509421000670_inline9.png" />
<jats:tex-math>
$25/36 = 0.69\overline {4}$
</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>. This also establishes a level of distribution for a positive density set of moduli that improves upon a result of Hooley. We show more generally that one can break the <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S2050509421000670_inline10.png" />
<jats:tex-math>
$X^{3/4}$
</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>-barrier for a density 1 set of <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S2050509421000670_inline11.png" />
<jats:tex-math>
$X^{\eta }$
</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>-smooth moduli <jats:italic>q</jats:italic> (without the squarefree condition).
Our proof appeals to the <jats:italic>q</jats:italic>-analogue of the van der Corput method of exponential sums, due to Heath-Brown, to reduce the task to estimating correlations of certain Kloosterman-type complete exponential sums modulo prime powers. In the prime case we obtain a power-saving bound via a cohomological treatment of these complete sums, while in the higher prime power case we establish savings of this kind using <jats:italic>p</jats:italic>-adic methods.
In application/xml+jats
format
Archived Files and Locations
application/pdf
797.0 kB
file_6k7ydao6vvdmhjddnlemtx5ury
|
www.cambridge.org (publisher) web.archive.org (webarchive) |
access all versions, variants, and formats of this works (eg, pre-prints)
Crossref Metadata (via API)
Worldcat
SHERPA/RoMEO (journal policies)
wikidata.org
CORE.ac.uk
Semantic Scholar
Google Scholar