Capturing Hidden Regulation based on Noise Change of Gene Expression Level from Single Cell RNA-seq in Yeast release_4xzbr5lbb5bmzmpio7646vqrvq

by Thoma Itoh, Takashi Makino

Released as a post by Research Square Platform LLC.

2021  

Abstract

<jats:title>Abstract</jats:title> Recent progress in high throughput single cell RNA-seq (scRNA-seq) has activated the development of data-driven inferring methods of gene regulatory networks. Most network estimations assume that perturbations produce downstream effects. However, the effects of gene perturbations are sometimes compensated by a gene with redundant functionality (functional compensation). In order to avoid functional compensation, previous studies constructed double gene deletions, but its vast nature of gene combinations was not suitable for comprehensive network estimation. We hypothesized that functional compensation may emerge as a noise change without mean change (noise-only change) due to varying physical properties and strong compensation effects. Here, we show compensated interactions, which are not detected by mean change, are captured by noise-only change quantified from scRNA-seq. We investigated whether noise-only change genes caused by a single deletion of STP1 and STP2, which have strong functional compensation, are enriched in redundantly regulated genes. As a result, noise-only change genes are enriched in their redundantly regulated genes. Furthermore, novel downstream genes detected from noise change are enriched in "transport", which is related to known downstream genes. Herein, we suggest the noise difference comparison has the potential to be applied as a new strategy for network estimation that capture even compensated interaction.
In application/xml+jats format

Archived Files and Locations

application/pdf   636.2 kB
file_j5kb7ogt2jezbiomkutjjuxou4
assets.researchsquare.com (publisher)
web.archive.org (webarchive)
application/pdf   645.0 kB
file_hpdzzukljvbxth67by5zcthoiy
assets.researchsquare.com (web)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  post
Stage   unknown
Date   2021-07-07
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: 8710b6bc-6fb5-47f8-9edb-f3f0af9edaca
API URL: JSON