The Novel Peptide Chm-273s Has Therapeutic Potential for Metabolic Disorders: Evidence from In Vitro Studies and High-Sucrose Diet and High-Fat Diet Rodent Models
release_3wsokafq5bha7pmkmpobne536m
by
Nikita Mitkin,
Vsevolod V. Pavshintcev,
Iuliia Sukhanova,
Igor I. Doronin,
Gennady A. Babkin,
Marianna Sadagurski,
Anton V. Malyshev
Abstract
The aim of this study was to develop a novel peptide potentially applicable for the treatment of metabolic conditions, such as obesity and type 2 diabetes (T2D). We identified CHM-273S from the list of peptides from milk hydrolysate obtained by HPLC/MS-MS. In vitro analysis of primary murine fibroblasts indicated the potential of CHM-273S to upregulate IRS2 mRNA expression. CHM-273S showed a prominent anorexigenic effect in mice with the induction of a key mechanism of leptin signaling via STAT3 in the hypothalamus as a possible effector. In the animal model of metabolic disease, CHM-273S alleviated glucose intolerance and insulin resistance, and induced phosphorylation of Akt at Ser473 and Thr308 in the hepatocytes of high-sucrose diet-fed rats. In a murine model of T2D, CHM-273S mitigated high-fat diet-induced hyperglycemia and insulin resistance and improved low-grade inflammation by diminishing serum TNFα. Mice treated with chronic CHM-273S had a significant reduction in body weight, with a lower visceral fat pad weight and narrow adipocytes. The effects of the peptide administration were comparable to those of metformin. We show the potential of CHM-273S to alleviate diet-induced metabolic alterations in rodents, substantiating its further development as a therapeutic for obesity, T2D, and other metabolic conditions.
In application/xml+jats
format
Archived Files and Locations
application/pdf
5.1 MB
file_67fc7u52tbgwncc6wlwbqyo5re
|
mdpi-res.com (publisher) web.archive.org (webarchive) |
Open Access Publication
In DOAJ
In ISSN ROAD
In Keepers Registry
ISSN-L:
1999-4923
access all versions, variants, and formats of this works (eg, pre-prints)
Crossref Metadata (via API)
Worldcat
SHERPA/RoMEO (journal policies)
wikidata.org
CORE.ac.uk
Semantic Scholar
Google Scholar