Assessing Market Risk in BRICS and Oil Markets: An Application of Markov Switching and Vine Copula release_3p3qzmxqr5guza737atej6uv6a

by John Weirstrass Muteba Mwamba, sutene mwambi

References

NOTE: currently batch computed and may include additional references sources, or be missing recent changes, compared to entity reference list.
Fuzzy reference matching is a work in progress!
Read more about quality, completeness, and caveats in the fatcat guide.
Showing 1 - 30 of 64 references (in 86ms)
[ref1]

via crossref
Models for construction of multivariate dependence – a comparison study
Kjersti Aas, Daniel Berg
2009   European Journal of Finance
doi:10.1080/13518470802588767 
web.archive.org [PDF]
[ref2]

via crossref
Pair-copula constructions of multiple dependence
Kjersti Aas, Claudia Czado, Arnoldo Frigessi, Henrik Bakken
2009   Insurance, Mathematics & Economics
doi:10.1016/j.insmatheco.2007.02.001 
web.archive.org [PDF]
[ref3]

via crossref
Do structural oil-market shocks affect stock prices?
Nicholas Apergis, Stephen M. Miller
2009   Energy Economics
doi:10.1016/j.eneco.2009.03.001 
web.archive.org [PDF]
[b3]

via grobid
Forecasting risk with Markov-switching GARCH models:A large-scale performance study
David Ardia, Keven Bluteau, Kris Boudt, Leopoldo Catania
2018   International Journal of Forecasting
doi:10.1016/j.ijforecast.2018.05.004 
web.archive.org [PDF]
[b4]

via grobid
Markov-Switching GARCH Models in R: The MSGARCH Package
David Ardia, Keven Bluteau, Kris Boudt, Leopoldo Catania, Denis-Alexandre Trottier
2019   Journal of Statistical Software
doi:10.18637/jss.v091.i04 
web.archive.org [PDF]
[b5]

via grobid
BCBS. 2019. Minimum Capital Requirements for Market Risk. BASEL III. Available online: https://www.bis.org/bcbs/publ/d457.pdf (accessed on 30 March 2021).
[ref7]

via crossref
:{unav)
Tim Bedford, Roger M. Cooke
2012   Annals of Mathematics and Artificial Intelligence
doi:10.1023/a:1016725902970 
[ref8]

via crossref
Vines--a new graphical model for dependent random variables
Tim Bedford, Roger M. Cooke
2002   The Annals of Statistics
doi:10.1214/aos/1031689016 
web.archive.org [PDF]
[ref9]

via crossref
Multivariate dependence risk and portfolio optimization: An application to mining stock portfolios
Stelios Bekiros, Jose Arreola Hernandez, Shawkat Hammoudeh, Duc Khuong Nguyen
2015   Resources policy
doi:10.1016/j.resourpol.2015.07.003 
[ref10]

via crossref
The contagion effect in European sovereign debt markets: A regime-switching vine copula approach
Ahmed BenSaïda
2018   International Review of Financial Analysis
doi:10.1016/j.irfa.2017.09.013 
[b10]

via grobid
Return, volatility spillovers and dynamic correlation in the BRIC equity markets: An analysis using a bivariate EGARCH framework
Ramaprasad Bhar, Biljana Nikolova
2009   Global Finance Journal
doi:10.1016/j.gfj.2008.09.005 
[ref12]

via crossref
Modelling the Coherence in Short-Run Nominal Exchange Rates: A Multivariate Generalized Arch Model
Tim Bollerslev
1990   Review of Economics and Statistics
doi:10.2307/2109358 
[ref13]

via crossref
Uncovering equity market contagion among BRICS countries: An application of the multivariate GARCH model
Lumengo Bonga-Bonga
2018   Quarterly Review of Economics and Finance
doi:10.1016/j.qref.2017.04.009 
web.archive.org [PDF]
[b13]

via grobid
Oil volatility and sovereign risk of BRICS
Elie Bouri, Syed Jawad Hussain Shahzad, Naveed Raza, David Roubaud
2018   Energy Economics
doi:10.1016/j.eneco.2017.12.018 
[ref15]

via crossref
A survey on optimization metaheuristics
Ilhem Boussaïd, Julien Lepagnot, Patrick Siarry
2013   Information Sciences
doi:10.1016/j.ins.2013.02.041 
web.archive.org [PDF]
[b15]

via grobid
Risk management with high-dimensional vine copulas: An analysis of the Euro Stoxx 50
Eike Christain Brechmann, Claudia Czado
2013   Statistics & Risk Modeling
doi:10.1524/strm.2013.2002 
web.archive.org [PDF]
[b16]

via grobid
Cherubini, Umberto, Elisa Luciano, and Walter Vecchiato. 2004. Copula Methods in Finance. West Sussex: John Wiley & Sons.
[ref18]

via crossref
Exchange rate movements and stock market returns in a regime-switching environment: Evidence for BRICS countries
Walid Chkili, Duc Khuong Nguyen
2014   Research In International Business and Finance
doi:10.1016/j.ribaf.2013.11.007 
[ref19]

via crossref
Analyzing Dependent Data with Vine Copulas [book]
Claudia Czado
2019   Lecture Notes in Statistics
doi:10.1007/978-3-030-13785-4 
[b19]

via grobid
Choosing an optimal investment strategy: The role of robust pair-copulas based portfolios
Beatriz Vaz de Melo Mendes, Daniel S. Marques
2012   Emerging Markets Review
doi:10.1016/j.ememar.2012.07.005 
web.archive.org [PDF]
[b20]

via grobid
Discussion
Robert F. Engle
1990   The Review of financial studies
doi:10.1093/rfs/3.1.103 
[ref22]

via crossref
Dynamic Conditional Correlation
Robert Engle
2002   Journal of business & economic statistics
doi:10.1198/073500102288618487 
web.archive.org [PDF]
[ref23]

via crossref
Dynamic Equicorrelation
Robert Engle, Bryan Kelly
2012   Journal of business & economic statistics
doi:10.1080/07350015.2011.652048 
web.archive.org [PDF]
[b23]

via grobid
Engle, Robert, and Bryan Kelly. 2012. Dynamic equicorrelation. Journal of Business & Economic Statistics 30: 212-28.
[b24]

via grobid
Fabozzi, Frank J., Petter N. Kolm, Dessislava A. Pachamanova, and Sergio M. Focardi. 2007. Robust Portfolio Optimization and Management. Hoboken: John Wiley & Sons.
[b25]

via grobid
Diversifying portfolios of U.S. stocks with crude oil and natural gas: A regime-dependent optimization with several risk measures
Hayette Gatfaoui
2019   Energy Economics
doi:10.1016/j.eneco.2018.12.013 
web.archive.org [PDF]
[b26]

via grobid
On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks
LAWRENCE R. GLOSTEN, RAVI JAGANNATHAN, DAVID E. RUNKLE
1993   Journal of Finance
doi:10.1111/j.1540-6261.1993.tb05128.x 
web.archive.org [PDF]
[ref28]

via crossref
Autoregressive Conditional Density Estimation
Bruce E. Hansen
1994   International Economic Review
doi:10.2307/2527081 
[ref29]

via crossref
Islamic stocks, conventional stocks, and crude oil: Directional volatility spillover analysis in BRICS
Kamrul Hassan, Ariful Hoque, Muammer Wali, Donimic Gasbarro
2020   Energy Economics
doi:10.1016/j.eneco.2020.104985 
[b29]

via grobid
Hassan, Kamrul, Ariful Hoque, Muammer Wali, and Dominic Gasbarro. 2020. Islamic stocks, conventional stocks, and crude oil: Directional volatility spillover analysis in brics. Energy Economics 92: 104985. [CrossRef]
Showing 1 - 30 of 64 references  next »