Diffusion and Velocity Correlations of the Phase Transitions in a System of Macroscopic Rolling Spheres release_36mes6iocrgypf2feshyvgkr2u

by Francisco Vega Reyes, Alvaro Rodriguez-Rivas, Juan F. González-Saavedra, Miguel Ángel López Castaño

Released as a post by MDPI AG.

2022  

Abstract

We study an air-fluidized granular monolayer, composed in this case of plastic spheres, which roll on a metallic grid. The air current is adjusted so that the spheres never loose contact with the grid, so that the dynamics may be regarded as pseudo two-dimensional (or two-dimensional, if the effects of sphere rolling are not taken into account). We find two surprising continuous transitions, both of them displaying two coexisting phases. Moreover, in all cases, we found the coexisting phases display strong energy non-equipartition. In the first transition, at weak fludization, a glassy phase coexists with a disordered fluid-like phase. In the second transition, a hexagonal crystal coexists with the fluid phase. We analyze, for these two-phase systems, the specific diffusive properties of each phase, as well as the velocity correlations. Surprisingly, we find a glass phase at very low packing fraction and for a wide range of granular temperatures. Both phases are characterized also by a strong anti-correlated velocities upon collision. Thus, the dynamics observed for this quasi two-dimensional system unveils phase transitions with peculiar properties, very different from the predicted behavior in well know theories for their equilibrium counterparts.
In application/xml+jats format

Archived Files and Locations

application/pdf   12.7 MB
file_k3efotuay5fojo53jbpuibiwei
www.preprints.org (publisher)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  post
Stage   unknown
Date   2022-09-22
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: 61978630-07e6-49ff-b5d0-d4d8afc764d4
API URL: JSON