Analysis of Permanent Magnet Motors in High Frequency—A Review
release_2h5rl22j3zfwzji4q3te27af4y
by
Yerai Moreno,
Gaizka Almandoz,
Aritz Egea,
Beñat Arribas,
Ander Urdangarin
Abstract
Electric drives consume a great amount of the world's energy, and it will keep increasing due to the electromobility trend. Thus, the efficiency of electric drives must be improved to reach the desired sustainability goal. The Silicon Carbide devices contribute to this objective due to their high working frequency and lower switching losses. However, working at higher frequencies may bring serious Electromagnetic Compatibility (EMC) problems, as well as insulation stress and higher bearing currents. Hence, it is important to have an electrical machine electrical equivalent circuit model to predict the electromagnetic interference levels. This review summarizes the current state of the art in electrical machine modeling and analysis in high frequency. The main analysis tools as Finite Element Methods, analytic and measurement-based tools are compared in their application on high-frequency electrical machine analysis. Then, different machine high-frequency models are reported, detailing their individual features. Additionally, the influence of the machine design parameters in EMC behavior is outlined for future analysis. All in all, Finite Element analysis is the most accurate tool for high-frequency analysis, provided that mesh size is thinner than the skin depth. It is also concluded that the winding placement is an essential parameter to define the high-frequency behavior of the machine.
In application/xml+jats
format
Archived Files and Locations
application/pdf
3.0 MB
file_zu2ce64rlzabbko6qqpnsyyfxy
|
res.mdpi.com (publisher) web.archive.org (webarchive) |
Open Access Publication
In DOAJ
In ISSN ROAD
In Keepers Registry
ISSN-L:
2076-3417
access all versions, variants, and formats of this works (eg, pre-prints)
Crossref Metadata (via API)
Worldcat
SHERPA/RoMEO (journal policies)
wikidata.org
CORE.ac.uk
Semantic Scholar
Google Scholar